Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21(3):451–457
Article
CAS
PubMed
Google Scholar
Arokoski JP, Jurvelin JS, Vaatainen U, Helminen HJ (2000) Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports 10(4):186–198
Article
CAS
PubMed
Google Scholar
Bachrach NM, Mow VC, Guilak F (1998) Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J Biomech 31(5):445–451
Article
CAS
PubMed
Google Scholar
Bahuleyan B, Cheung HS, Huang CYC (2009) Role of biomechanical force in stem cell-based therapy for cartilage repair. Curr Rheumatol Rev 5(1):34–39
Article
CAS
Google Scholar
Bonassar LJ, Grodzinsky AJ, Frank EH, Davila SG, Bhaktav NR, Trippel SB (2001) The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res 19(1):11–17
Article
CAS
PubMed
Google Scholar
Brand RA (2005) Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop J 25:82–94
PubMed Central
PubMed
Google Scholar
Brittberg M (2010) Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 38(6):1259–1271
Article
PubMed
Google Scholar
Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486
CAS
PubMed
Google Scholar
Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108(Pt 4):1497–1508
CAS
PubMed
Google Scholar
Carver SE, Heath CA (1999a) Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol Bioeng 62(2):166–174
Article
CAS
PubMed
Google Scholar
Carver SE, Heath CA (1999b) Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol Bioeng 65(3):274–281
Article
CAS
PubMed
Google Scholar
Cawston TE, Wilson AJ (2006) Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol 20(5):983–1002
Article
CAS
PubMed
Google Scholar
Chu CR, Szczodry M, Bruno S (2010) Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev 16(1):105–115
Article
PubMed Central
PubMed
Google Scholar
Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262
Article
CAS
PubMed Central
PubMed
Google Scholar
Cohen NP, Foster RJ, Mow VC (1998) Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther 28(4):203–215
Article
CAS
PubMed
Google Scholar
Darling EM, Athanasiou KA (2003) Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng 31(9):1114–1124
Article
PubMed
Google Scholar
De Croos JN, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA (2006) Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix biology : journal of the International Society for Matrix Biology 25(6):323–331
Article
Google Scholar
Demarteau O, Jakob M, Schafer D, Heberer M, Martin I (2003) Development and validation of a bioreactor for physical stimulation of engineered cartilage. Biorheology 40(1–3):331–336
CAS
PubMed
Google Scholar
Démarteau O, Wendt D, Braccini A, Jakob M, Schäfer D, Heberer M, Martin I (2003) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310(2):580–588
Article
PubMed
Google Scholar
Doke J, Donelan JM, Kuo AD (2005) Mechanics and energetics of swinging the human leg. J Exp Biol 208(Pt 3):439–445
Article
PubMed
Google Scholar
Echtermeyer F, Bertrand J, Dreier R, Meinecke I, Neugebauer K, Fuerst M, Lee YJ, Song YW, Herzog C, Theilmeier G, Pap T (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15(9):1072–1076
Article
CAS
PubMed
Google Scholar
El-Ayoubi R, DeGrandpre C, DiRaddo R, Yousefi AM, Lavigne P (2011) Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl 25(5):429–444
Article
CAS
PubMed
Google Scholar
Elder BD, Athanasiou KA (2008) Synergistic and additive effects of hydrostatic pressure and growth factors on tissue formation. PLoS One 3(6), e2341
Article
PubMed Central
PubMed
Google Scholar
Elder BD, Athanasiou KA (2009) Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev 15(1):43–53
Article
CAS
PubMed Central
PubMed
Google Scholar
Fan JC, Waldman SD (2010) The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Ann Biomed Eng 38(4):1672–1682
Article
PubMed
Google Scholar
Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883(2):173–177
Article
CAS
PubMed
Google Scholar
Finger AR, Sargent CY, Dulaney KO, Bernacki SH, Loboa EG (2007) Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng 13(6):1151–1158
Article
CAS
PubMed
Google Scholar
Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ (2011) The role of growth factors in cartilage repair. Clin Orthop Relat Res 469(10):2706–2715
Article
PubMed Central
PubMed
Google Scholar
Giddings VL, Beaupre GS, Whalen RT, Carter DR (2000) Calcaneal loading during walking and running. Med Sci Sports Exerc 32(3):627–634
Article
CAS
PubMed
Google Scholar
Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2000) Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2:691–713
Article
CAS
PubMed
Google Scholar
Guettler JH, Demetropoulos CK, Yang KH, Jurist KA (2004) Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 32(6):1451–1458
Article
PubMed
Google Scholar
Hannon CP, Smyth NA, Murawski CD, Savage-Elliott I, Deyer TW, Calder JD, Kennedy JG (2014) Osteochondral lesions of the talus: aspects of current management. The bone & joint journal 96-B(2):164–171
Article
CAS
Google Scholar
Heath CA, Magari SR (1996) Mini-review: Mechanical factors affecting cartilage regeneration in vitro. Biotechnol Bioeng 50(4):430–437
Article
CAS
PubMed
Google Scholar
Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier KH, Reiser M, Eckstein F (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32(12):1287–1295
Article
CAS
PubMed
Google Scholar
Hess R, Douglas T, Myers KA, Rentsch B, Rentsch C, Worch H, Shrive NG, Hart DA, Scharnweber D (2010) Hydrostatic pressure stimulation of human mesenchymal stem cells seeded on collagen-based artificial extracellular matrices. J Biomech Eng 132(2):021001
Article
PubMed
Google Scholar
Heyland J, Wiegandt K, Goepfert C, Nagel-Heyer S, Ilinich E, Schumacher U, Portner R (2006) Redifferentiation of chondrocytes and cartilage formation under intermittent hydrostatic pressure. Biotechnol Lett 28(20):1641–1648
Article
CAS
PubMed
Google Scholar
Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M (2011) State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med 5(4):e36–51
Article
CAS
PubMed
Google Scholar
Hilz FM, Ahrens P, Grad S, Stoddart MJ, Dahmani C, Wilken FL, Sauerschnig M, Niemeyer P, Zwingmann J, Burgkart R, von Eisenhart-Rothe R, Südkamp NP, Weyh T, Imhoff AB, Alini M, Salzmann GM (2014) Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering. Bioelectromagnetics 35(2):116–128
Article
CAS
PubMed
Google Scholar
Hu JC, Athanasiou KA (2006) The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs. Tissue Eng 12(5):1337–1344
Article
CAS
PubMed
Google Scholar
Hung CT, Mauck RL, Wang CC, Lima EG, Ateshian GA (2004) A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann Biomed Eng 32(1):35–49
Article
PubMed
Google Scholar
Hunt KJ, Lee AT, Lindsey DP, Slikker W 3rd, Chou LB (2012) Osteochondral lesions of the talus: effect of defect size and plantarflexion angle on ankle joint stresses. Am J Sports Med 40(4):895–901
Article
PubMed
Google Scholar
Ikenoue T, Trindade MCD, Lee MS, Lin EY, Schurman DJ, Goodman SB, Smith RL (2003) Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res 21(1):110–116
Article
CAS
PubMed
Google Scholar
Jortikka MO, Parkkinen JJ, Inkinen RI, Karner J, Jarvelainen HT, Nelimarkka LO, Tammi MI, Lammi MJ (2000) The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys 374(2):172–180
Article
CAS
PubMed
Google Scholar
Kawanishi M, Oura A, Furukawa K, Fukubayashi T, Nakamura K, Tateishi T, Ushida T (2007) Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system. Tissue Eng 13(5):957–964
Article
CAS
PubMed
Google Scholar
Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW (2008) Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater 16:26–39
CAS
PubMed
Google Scholar
Khan KM, Scott A (2009) Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med 43(4):247–252
Article
CAS
PubMed Central
PubMed
Google Scholar
Kok AC, Tuijthof GJ, den Dunnen S, van Tiel J, Siebelt M, Everts V, van Dijk CN, Kerkhoffs GM (2013) No effect of hole geometry in microfracture for talar osteochondral defects. Clin Orthop Relat Res 471(11):3653–3662
Article
PubMed Central
PubMed
Google Scholar
Li Y, Frank EH, Wang Y, Chubinskaya S, Huang HH, Grodzinsky AJ (2013) Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates degradation above a strain threshold. Osteoarthritis Cartilage 21(12):1933–1941
Article
CAS
PubMed
Google Scholar
Luo ZJ, Seedhom BB (2007) Light and low-frequency pulsatile hydrostatic pressure enhances extracellular matrix formation by bone marrow mesenchymal cells: an in-vitro study with special reference to cartilage repair. Proc Inst Mech Eng H J Eng Med 221(5):499–507
Article
CAS
Google Scholar
Madry H, Grün UW, Knutsen G (2011) Cartilage repair and joint preservation: Medical and surgical treatment options. Deutsches Arzteblatt 108(40):669–677
Google Scholar
Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA 18(4):419–433
Article
Google Scholar
Magnussen RA, Dunn WR, Carey JL, Spindler KP (2008) Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res 466(4):952–962
Article
PubMed Central
PubMed
Google Scholar
Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9(4):597–611
Article
CAS
PubMed
Google Scholar
Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3):252–260
Article
CAS
PubMed
Google Scholar
Meachim G, Stockwell RA (1973) The Matrix. Freeman MA (ed) Adult articular cartilage. Pitman medical, London, pp 1–5.
Miller RE, Grodzinsky AJ, Barrett MF, Hung HH, Frank EH, Werpy NM, McIlwraith CW, Frisbie DD (2014) Effects of the combination of microfracture and self-assembling Peptide filling on the repair of a clinically relevant trochlear defect in an equine model. J Bone Joint Surg Am 96(19):1601–1609
Article
PubMed
Google Scholar
Miyanishi K, Trindade MC, Lindsey DP, Beaupre GS, Carter DR, Goodman SB, Schurman DJ, Smith RL (2006a) Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Eng 12(8):2253–2262
Article
CAS
PubMed
Google Scholar
Miyanishi K, Trindade MC, Lindsey DP, Beaupre GS, Carter DR, Goodman SB, Schurman DJ, Smith RL (2006b) Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12(6):1419–1428
Article
CAS
PubMed
Google Scholar
Mizuno S, Ogawa R (2011) Using changes in hydrostatic and osmotic pressure to manipulate metabolic function in chondrocytes. Am J Physiol Cell Physiol 300(6):C1234–1245
Article
CAS
PubMed
Google Scholar
Mow VC, Wang CC, Hung CT (1999) The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 7(1):41–58
Article
CAS
PubMed
Google Scholar
Nebelung S, Gavenis K, Luring C, Zhou B, Mueller-Rath R, Stoffel M, Tingart M, Rath B (2012) Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Annals of anatomy = Anatomischer Anzeiger: official organ of the Anatomische Gesellschaft 194(4):351–358
Article
CAS
Google Scholar
Nebelung S, Gavenis K, Rath B, Tingart M, Ladenburger A, Stoffel M, Zhou B, Mueller-Rath R (2011) Continuous cyclic compressive loading modulates biological and mechanical properties of collagen hydrogels seeded with human chondrocytes. Biorheology 48(5):247–261
CAS
PubMed
Google Scholar
Nicodemus GD, Bryant SJ (2010) Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Osteoarthritis Cartilage 18(1):126–137
Article
CAS
PubMed
Google Scholar
Okuda Y, Konishi R, Miyata S (2013) Effect of cyclic compressive stimuli on mechanical anisotropy of chondrocyte-seeded agarose gel culture. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C 79(801):1736–1743
CAS
Google Scholar
Omata S, Sonokawa S, Sawae Y, Murakami T (2012) Effects of both vitamin C and mechanical stimulation on improving the mechanical characteristics of regenerated cartilage. Biochem Biophys Res Commun 424(4):724–729
Article
CAS
PubMed
Google Scholar
Ortved KF, Begum L, Mohammed HO, Nixon AJ (2015) Implantation of rAAV5-IGF-I Transduced Autologous Chondrocytes Improves Cartilage Repair in Full-thickness Defects in the Equine Model. Molecular therapy: the journal of the American Society of Gene Therapy 23(2):363–373
Article
CAS
Google Scholar
Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300(1):458–465
Article
CAS
PubMed
Google Scholar
Potier E, Noailly J, Ito K (2010) Directing bone marrow-derived stromal cell function with mechanics. J Biomech 43(5):807–817
Article
CAS
PubMed
Google Scholar
Saris DB, Dhert WJ, Verbout AJ (2003) Joint homeostasis. The discrepancy between old and fresh defects in cartilage repair. J Bone Joint Surg 85(7):1067–1076
Article
CAS
Google Scholar
Schulz RM, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. European biophysics journal : EBJ 36(4–5):539–568
Article
CAS
PubMed
Google Scholar
Shelton JC, Bader DL, Lee DA (2003) Mechanical conditioning influences the metabolic response of cell-seeded constructs. Cells Tissues Organs 175(3):140–150
Article
PubMed
Google Scholar
Shepherd DE, Seedhom BB (1999) The ‘instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology (Oxford) 38(2):124–132
Article
CAS
Google Scholar
Smith RL, Lin J, Trindade MC, Shida J, Kajiyama G, Vu T, Hoffman AR, van der Meulen MC, Goodman SB, Schurman DJ, Carter DR (2000) Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression. J Rehabil Res Dev 37(2):153–161
CAS
PubMed
Google Scholar
Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, Caler WE, Sandell LJ, Schurman DJ (1996) In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res 14(1):53–60
Article
CAS
PubMed
Google Scholar
Spiller KL, Maher SA, Lowman AM (2011) Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 17(4):281–299
Article
CAS
PubMed Central
PubMed
Google Scholar
Suh JK, Baek GH, Aroen A, Malin CM, Niyibizi C, Evans CH, Westerhausen-Larson A (1999) Intermittent sub-ambient interstitial hydrostatic pressure as a potential mechanical stimulator for chondrocyte metabolism. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 7(1):71–80
Article
CAS
PubMed
Google Scholar
Torzilli PA, Bhargava M, Chen CT (2011) Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression. Cartilage 2(4):364–373
Article
CAS
PubMed Central
PubMed
Google Scholar
Torzilli PA, Tehrany AM, Grigiene R, Young E (1996) Effects of misoprostol and prostaglandin E2 on proteoglycan biosynthesis and loss in unloaded and loaded articular cartilage explants. Prostaglandins 52(3):157–173
Article
CAS
PubMed
Google Scholar
van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ (2010a) The natural history of osteochondral lesions in the ankle. Instr Course Lect 59:375–386
PubMed
Google Scholar
van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ (2010b) Osteochondral defects in the ankle: why painful? Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 18(5):570–580
Article
Google Scholar
Wagner DR, Lindsey DP, Li KW, Tummala P, Chandran SE, Smith RL, Longaker MT, Carter DR, Beaupre GS (2008) Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann Biomed Eng 36(5):813–820
Article
PubMed
Google Scholar
Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA (2004) Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng 10(9–10):1323–1331
Article
CAS
PubMed
Google Scholar
Waters RL, Lunsford BR, Perry J, Byrd R (1988) Energy-speed relationship of walking: standard tables. J Orthop Res 6(2):215–222
Article
CAS
PubMed
Google Scholar
Zengerink M, Szerb I, Hangody L, Dopirak RM, Ferkel RD, van Dijk CN (2006) Current concepts: treatment of osteochondral ankle defects. Foot Ankle Clin 11(2):331–359, vi
Article
PubMed
Google Scholar