The most important finding of our study was that both tested extracortical fixation devices provided comparable biomechanical properties for tibial graft fixation.
Due to poor bone quality, the tibial graft side is referred to as “weak spot” in ACL-reconstruction (Brand Jr et al., 2000) emphasizing the need for improvement. Therefore our study focused on this aspect. Two suspensory devices were evaluated due to their capacity to withstand cyclic displacement and ultimate failure loads after ACL reconstruction in an biomechanical in vitro study.
It is widely accepted that elongation and ultimate failure force are crucial parameters for graft stability.
Ultimate failure loads have been reported as 1,725–2,160 N for the native ACL, 2,977 N for patellar tendon grafts, 2,352 N for quadriceps tendon grafts, and even 4,090 N for hamstring tendon grafts (West and Harner, 2005; Noyes et al., 1984). These numbers do not include any fixation of the tendon onto the bone, therefore emphasizing that the grafts themselves are even stronger than the native ACL, requiring to focus on graft fixation as the weaker spot of reconstruction.
However, these forces are applied to the whole ACL complex, there is no measurement for the tibial graft side, alone. In the present study we tried to limit this factor by using the identical setup on the femoral graft fixation side.
Graft fixation with interference screws can lead to a direct ligament insertion zone by creating compression of the graft against the bony tunnel walls. However, a variety of issues apply for interference screw fixation. As recommended by most manufacturers, the interference screw diameter should be similar or larger by + 1 mm for the tibial fixation in tendon grafts without bone blocks. Over dimensioned screws create strong initial compression, but can lead to eventual tunnel enlargement later on, creating difficulties in revision surgery (Buelow et al., 2002).
Bioabsorbable interference screws have been reported to be entirely absorbed and replaced by bone after around one to two years (Weiler et al., 2002a; Weiler et al., 2002b). Polylactid screws (Poly-L-Lactid, PLLA), which were used initially and thought to be absorbed over 3 to 5 years, were shown to sometimes not to get absorbed at all (Martinek et al., 2001; Stahelin et al., 1997). The ideal mixture of material is challenging, as absorption of the screw is a time-sensitive process.
As reported by Rodeo et al., extracortical graft fixation creates a fibrous layer between the tendon graft and the bone tunnel (Rodeo et al., 1993; Tomita et al., 2001). Studies from 1999 and 2000 have reported that this layer is later transformed into type II collagen and creates an indirect ligament insertion zone, which is due to longitudinal shearing instability, the so called “bungee effect” (Hoher et al., 1999; Jorgensen and Thomsen, 2000). In 2000, it was also reported that extracortical graft fixation has to deal with a long distance between the anchoring points of the graft, leading to elastic deformity of the construct, and eventually impeding bony ingrowth (Hoher et al., 2000).
On the other hand, recent studies investigating such extracortical fixation buttons have shown both promising biomechanical results in vitro (Johnson et al., 2015; Noonan et al., 2016; Petre et al., 2013) as well as good clinical outcomes (Boyle et al., 2015).
Among extracortical fixation buttons, fixed-loop and adjustable-loop suspension devices are available. In an effort to clinically investigate the suggestion that adjustable-loop graft suspension constructs in anterior cruciate ligament reconstruction may loosen after deployment, (Boyle et al., 2015) reported the two-year outcomes of their consecutive single-surgeon series of 188 patients with primary ACL reconstruction using hamstrings autografts. Seventy-three patients received adjustable-loop (TightRope RT, Arthrex Inc., Naples, FL) and 115 received fixed-loop (RetroButton, Arthrex Inc., Naples, FL) femoral cortical suspension. The authors found no significant difference between the two groups in KT-1000 testing at all time-points up to two years of follow-up. The rates of graft failure were similar too at 10% vs. 11%, respectively (Boyle et al., 2015). This study by Boyle et al. supports the clinical application of adjustable-loop suspension devices in ACL reconstruction.
The biomechanics of the two devices used in this study have been examined by Pasquali et al. in 2017 (Pasquali et al., 2017). They were able to show significantly higher forces for the RLA in comparison to TR under ultimate failure loads. Average displacement under cyclic loading was lower for the RLA (0.88 ± 0.14 mm vs. 1.13 ± 0.15 mm).
Our results regarding elongation under cyclic loading (4.6 ± 2.6 mm for the Rigid Loop Adjustable™ vs. 6.6 ± 1.5 mm for the ACL Tight Rope™, Fig. 3) exceed the suggested threshold of 3.0 mm displacement, defined as a clinical failure (Petre et al., 2013). This might be due to the fact that human hamstring tendons yield significantly lower initial elongation during preloading compared to porcine flexor digitorum profundus tendons as reported by Omar et al. (Omar et al., 2016). However, this study also found that biomechanical properties during cyclical loading were comparable. Additionally, they found that human hamstring tendons also showed significantly higher maximum failure loads than porcine flexor digitorum profundus tendons (1597 ± 179.6 N vs. 1109 ± 101.9 N; p = 0.035) (Omar et al., 2016). Both, the higher initial elongation during preloading and lower maximum failure load of porcine flexor digitorum profundus tendons needs to be taken into consideration for this study. However, taking into account the ultimate failure loads of fixation devices as shown in our study (980 ± 101.9 N vs. 861 ± 115 N, respectively), the ultimate failure loads of porcine flexor digitorum profundus tendons still are higher.
Furthermore, the loading value of the ACL during daily activities has been reported up to a maximal value of approximately 454 N (Noyes et al., 1984). The major advantages of porcine flexor tendons include good availability, and lower biomechanical variability compared to human cadaveric specimens.
The properties of sawbone femura compared to human cadaveric femura have been investigated in previous studies (Heiner, 2008; Gardner et al., 2010). Similar to porcine tendons, the advantages of sawbones include good availability, and lower biomechanical variability compared to human cadaveric specimens. Results of published cadaveric biomechanical studies are oftentimes spread over a broad range, which is most likely due to the anatomic variability among cadaveric specimens. Composite analogue bone models such as sawbone are able to mimic the structural properties of average healthy adult human bones (Gardner et al., 2010).
Several limitations apply to this study. First, with 8 specimens per group, the sample size of this study was limited. Second, this controlled laboratory study reflects the mechanical properties of femoral ACL fixations without any biological healing or remodeling responses. Third, as outlined above, the applicability of sawbones and porcine flexor digitorum profundus tendons needs to be thoroughly reflected. Due to the setup shear forces could not be considered. In vivo studies are desirable to further investigate the biological behaviour in the future.