Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219
Article
Google Scholar
Barnes CL, Blaha JD, DeBoer D, Stemniski P, Obert R, Carroll M (2012) Assessment of a medial pivot total knee arthroplasty design in a cadaveric knee extension test model. J Arthroplasty 27(8):1460–1468
Article
Google Scholar
Castellarin G, Bori E, Innocenti B (2020) Experimental and clinical analysis of the use of asymmetric vs symmetric polyethylene inserts in a mobile bearing total knee arthroplasty. J Orthop 23:25–30
Article
Google Scholar
Castellarin G, Pianigiani S, Innocenti B (2019) Asymmetric polyethylene inserts promote favorable kinematics and better clinical outcome compared to symmetric inserts in a mobile bearing total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 27(4):1096–1105
Article
Google Scholar
Cates HE, Komistek RD, Mahfouz MR, Schmidt MA, Anderle M (2008) In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J Arthroplasty 23(7):1057–1067
Article
Google Scholar
Dennis DA, Komistek RD (2006) Mobile-bearing total knee arthroplasty: design factors in minimizing wear. Clin Orthop Relat Res 2006452:70–77
Article
Google Scholar
Dennis DA, Komistek RD, Mahfouz MR, Outten JT, Sharma A (2005) Mobile-bearing total knee arthroplasty: do the polyethylene bearings rotate? Clin Orthop Relat Res 440:88–95
Article
Google Scholar
Donadio J, Pelissier A, Boyer P, Massin P (2015) Control of paradoxical kinematics in posterior cruciate-retaining total knee arthroplasty by increasing posterior femoral offset. Knee Surg Sports Traumatol Arthrosc 23(6):1631–1637
Article
CAS
Google Scholar
Edelstein AI, Bhatt S, Wright-Chisem J, Sullivan R, Beal M, Manning DW (2020) The effect of implant design on sagittal plane stability: a randomized trial of medial- versus posterior-stabilized total knee arthroplasty. J Knee Surg 33(5):452–458
Article
Google Scholar
Futai K, Tomita T, Yamazaki T, Tamaki M, Yoshikawa H, Sugamoto K (2011) In vivo kinematics of mobile-bearing total knee arthroplasty during deep knee bending under weight-bearing conditions. Knee Surg Sports Traumatol Arthrosc 19(6):914–920
Article
Google Scholar
Hoshi K, Watanabe G, Kurose Y, Tanaka R, Fujii J, Gamada K (2020) Mobile-bearing insert used with total knee arthroplasty does not rotate on the tibial tray during a squatting activity: a cross-sectional study. J Orthop Surg Res 15(1):114
Article
Google Scholar
Jones CW, Jacobs H, Shumborski S, Talbot S, Redgment A, Brighton R, Walter WL (2020) Sagittal stability and implant design affect patient reported outcomes after total knee arthroplasty. J Arthroplasty 35(3):747–751
Article
Google Scholar
Khasian M, Meccia BA, LaCour MT, Komistek RD (2021) Effects of the medial plateau bearing insert conformity on mid-flexion paradoxical motion in a posterior-stabilized total knee arthroplasty design. J Arthroplasty 36(7):2386–2392
Article
Google Scholar
Khasian M, Sharma A, Fehring TK, Griffin WL, Mason JB, Komistek RD (2020) Kinematic performance of gradually variable radius posterior-stabilized primary TKA during various activities: an in vivo study using fluoroscopy. J Arthroplasty 35(4):1101–1108
Article
Google Scholar
Matsumoto K, Iwamoto K, Mori N, Yamasaki T, Ito Y, Takigami I, Terabayashi N, Ogawa H, Tomita T, Akiyama H (2014) In vivo kinematics of a low contact stress rotating platform total knee arthroplasty system under weight bearing and non-weight bearing condition. J Orthop Sci 19(5):750–755
Article
Google Scholar
Milligan DJ, O’Brien S, Doran E, Gallagher NE, Beverland DE (2019) Twenty-year survivorship of a cemented mobile bearing total knee arthroplasty. Knee 26(4):933–940
Article
Google Scholar
Miura K, Ohkoshi Y, Ino T, Ukishiro K, Kawakami K, Suzuki S, Suzuki K, Maeda T (2020) Kinematics and center of axial rotation during walking after medial pivot type total knee arthroplasty. J Exp Orthop 7(1):72
Article
Google Scholar
Miyazaki Y, Nakamura T, Kogame K, Saito M, Yamamoto K, Suguro T (2011) Analysis of the kinematics of total knee prostheses with a medial pivot design. J Arthroplasty 26(7):1038–1044
Article
Google Scholar
Moonot P, Mu S, Railton GT, Field RE, Banks SA (2009) Tibiofemoral kinematic analysis of knee flexion for a medial pivot knee. Knee Surg Sports Traumatol Arthrosc 17(8):927–934
Article
Google Scholar
Omori G, Onda N, Shimura M, Hayashi T, Sato T, Koga Y (2009) The effect of geometry of the tibial polyethylene insert on the tibiofemoral contact kinematics in advance medial pivot total knee arthroplasty. J Orthop Sci 14(6):754–760
Article
Google Scholar
Rassir R, Puijk R, Singh J, Sierevelt IN, Vergroesen DA, de Jong T, Nolte PA (2022) Long-term clinical performance of an uncemented, mobile bearing, anterior stabilized knee system and the impact of previous knee surgery. J Arthroplasty 37(10):2041–2048
Article
Google Scholar
Samy DA, Wolfstadt JI, Vaidee I, Backstein DJ (2018) A retrospective comparison of a medial pivot and posterior-stabilized total knee arthroplasty with respect to patient-reported and radiographic outcomes. J Arthroplasty 33(5):1379–1383
Article
Google Scholar
Sato T, Koga Y, Omori G (2004) Three-dimensional lower extremity alignment assessment system: application to evaluation of component position after total knee arthroplasty. J Arthroplasty 19(5):620–628
Article
Google Scholar
Solarino G, Spinarelli A, Carrozzo M, Piazzolla A, Vicenti G, Moretti B (2014) Long-term outcome of low contact stress total knee arthroplasty with different mobile bearing designs. Joints 2(3):109–114
Article
Google Scholar
Sugita T, Sato K, Komistek RD, Mahfouz MR, Maeda I, Sano T (2005) In vivo determination of knee kinematics for Japanese subjects having either a low contact stress rotating platform or an anteroposterior glide total knee arthroplasty. J Arthroplasty 20(2):154–161
Article
Google Scholar
Tanifuji O, Sato T, Kobayashi K, Mochizuki T, Koga Y, Yamagiwa H, Omori G, Endo N (2011) Three-dimensional in-vivo motion analysis of normal knees using single-plane fluoroscopy. J Orthop Sci 16(6):710–718
Article
Google Scholar
Tanifuji O, Sato T, Kobayashi K, Mochizuki T, Koga Y, Yamagiwa H, Omori G, Endo N (2013) Three-dimensional in-vivo motion analysis of normal knees employing transept axis as an evaluation parameter. Knee Surg Sports Traumatol Arthrosc 21(10):2301–2308
Article
Google Scholar
van Ooij B, de Keijzer DR, Hoornenborg D, Sierevelt IN, Haverkamp D (2022) Lower revision rates for cemented fixation in a long-term survival analysis of three different LCS designs. Knee Surg Sports Traumatol Arthrosc 30(8):2707–2713
Article
Google Scholar
Vertullo CJ, Easley ME, Scott WN, Insall JN (2001) Mobile bearings in primary knee arthroplasty. J Am Acad Orthop Surg 9(6):355–364
Article
CAS
Google Scholar
Walker PS, Komistek RD, Barrett DS, Anderson D, Dennis DA, Sampson M (2002) Motion of a mobile bearing knee allowing translation and rotation. J Arthroplasty 17(1):11–19
Article
Google Scholar
Wasielewski RC, Komistek RD, Zingde SM, Sheridan KC, Mahfouz MR (2008) Lack of axial rotation in mobile-bearing knee designs. Clin Orthop Relat Res 466(11):2662–2668
Article
Google Scholar
Wolterbeek N, Garling EH, Mertens B, Valstar ER, Nelissen RG (2009) Mobile bearing knee kinematics change over time. A fluoroscopic study in rheumatoid arthritis patients. Clin Biomech (Bristol, Avon) 24(5):441–445
Article
CAS
Google Scholar
Yamazaki T, Futai K, Tomita T, Sato Y, Yoshikawa H, Tamura S, Sugamoto K (2015) 3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy. Int J Comput Assist Radiol Surg 10(4):487–495
Article
Google Scholar
Zürcher A, van Hutten K, Harlaar J, Pöll R (2017) Mobility of the rotating platform in low contact stress knee arthroplasty is durable. Knee Surg Sports Traumatol Arthrosc 25(8):2580–2585
Article
Google Scholar