Ali M, Phillips D, Kamson A, Nivar I, Dahl R, Hallock R (2022) Learning curve of robotic-assisted total knee arthroplasty for non-fellowship-trained orthopedic surgeons. Arthroplast Today 13:194–198
Article
Google Scholar
Batailler C, Hannouche D, Benazzo F, Parratte S (2021) Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg 141:2049–2058
Article
Google Scholar
Bloomfield A (2021) COVID-19, 20, 21: lessons from New Zealand’s 2020 response for 2021 and beyond. N Z Med J 134:7–9
PubMed
Google Scholar
Bouché PA, Corsia S, Dechartres A, Resche-Rigon M, Nizard R (2020) Are there differences in accuracy or outcomes scores among navigated, robotic, patient-specific instruments or standard cutting guides in TKA? A network meta-analysis. Clin Orthop Relat Res 478:2105–2116
Article
Google Scholar
Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KDJ (2010) Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin Orthop Relat Res 468:57–63
Article
Google Scholar
Brander VA, David Stulberg S, Adams AD, Harden RN, Bruehl S, Stanos SP, Houle T (2003) Predicting total knee replacement pain: A prospective, observational study. Clin Orthop Relat Res 416:27–36
Article
Google Scholar
Carr AJ, Robertsson O, Graves S, Price AJ, Arden NK, Judge A, Beard DJ (2012) Knee replacement. Lancet 379:1331–1340
Article
Google Scholar
Chow S-C, Wang H, Shao J (2007) Sample Size Calculations in Clinical Research. Chapman and Hall/CRC, Sample Size Calc. Clin. Res
Book
Google Scholar
Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS (2019) Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg, Sport Traumatol Arthrosc 27:1132–1141
Article
Google Scholar
Kayani B, Konan S, Pietrzak JRT, Huq SS, Tahmassebi J, Haddad FS (2018) The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J 100-B:1033–1042
Article
CAS
Google Scholar
Kayani B, Konan S, Pietrzak JRT, Tahmassebi J, Haddad FS (2018) Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty. Bone Jt J 100B:930–937
Article
Google Scholar
Kim YH, Yoon SH, Park JW (2020) Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? A randomized, controlled trial. Clin Orthop Relat Res 478:266–275
Article
Google Scholar
Knapp PW, Nett MP, Scuderi GR (2022) Optimizing total knee arthroplasty with ROSA® robotic technology. Surg Technol Online 40:1522
Google Scholar
Kohn MD, Sassoon AA, Fernando ND (2016) Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res 474:1886–1893
Article
Google Scholar
Larghi MM, Grassi M, Faugno L, Placenza E, Rampulla C, Manzotti A (2020) Clinical outcome before and after COVID-19 quarantine in patients affect of knee and hip osteoarthritis: Experience of orthopedic department in one of the first European country involved in COVID-19 pandemic. Acta Biomed 91:1–7
Google Scholar
Lau RL, Perruccio AV, Gandhi R, Mahomed NN (2012) The role of surgeon volume on patient outcome in total knee arthroplasty: A systematic review of the literature. BMC Musculoskelet Disord 13:250
Article
Google Scholar
Mahoney O, Kinsey T, Sodhi N, Mont MA, Chen AF, Orozco F, Hozack W (2022) Improved component placement accuracy with robotic-arm assisted total knee arthroplasty. J Knee Surg 35:337–344
Article
Google Scholar
Mahure SA, Teo GM, Kissin YD, Stulberg BN, Kreuzer S, Long WJ (2021) Learning curve for active robotic total knee arthroplasty. Knee Surg, Sport Traumatol Arthrosc 30:2666–2676
Article
Google Scholar
Marchand KB, Ehiorobo J, Mathew KK, Marchand RC, Mont MA (2022) Learning curve of robotic-assisted total knee arthroplasty for a high-volume surgeon. J Knee Surg 35:409–415
Article
Google Scholar
Naziri Q, Cusson BC, Chaudhri M, Shah NV, Sastry A (2019) Making the transition from traditional to robotic-arm assisted TKA: What to expect? A single-surgeon comparative-analysis of the first-40 consecutive cases. J Orthop 16:364–368
Article
Google Scholar
Parratte S, Price AJ, Jeys LM, Jackson WF, Clarke HD (2019) Accuracy of a new robotically assisted technique for total knee arthroplasty: A cadaveric study. J Arthroplasty 34:2799–2803
Article
Google Scholar
Rossi SMP, Sangaletti R, Perticarini L, Terragnoli F, Benazzo F (2022) High accuracy of a new robotically assisted technique for total knee arthroplasty: an in vivo study. Knee Surg, Sport Traumatol Arthrosc 4:1–9
Google Scholar
Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Böhler N, Labek G (2013) Revision surgery after total joint arthroplasty: A complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28:1329–1332
Article
Google Scholar
Seon JK, Song EK (2006) Navigation-Assisted Less Invasive Total Knee Arthroplasty Compared With Conventional Total Knee Arthroplasty. A Randomized Prospective Trial J Arthroplasty 21:777–782
PubMed
Google Scholar
Smith TJ, Siddiqi A, Forte SA, Judice A, Sculco PK, Vigdorchik JM, Schwarzkopf R, Springer BD (2021) Periprosthetic fractures through tracking pin sites following computer navigated and robotic total and unicompartmental knee arthroplasty: A systematic review. JBJS Rev 9(e20):00091
PubMed
Google Scholar
Sodhi N, Khlopas A, Piuzzi NS, Sultan AA, Marchand RC, Malkani AL, Mont MA (2018) The learning curve associated with robotic total knee arthroplasty. J Knee Surg J Knee Surg 31:17–21
Article
Google Scholar
Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA knee. Clin Orthop Relat Res 471:118–126
Article
Google Scholar
Stulberg BN, Zadzilka JD (2021) Active robotic technologies for total knee arthroplasty. Arch Orthop Trauma Surg 141:2069–2075
Article
Google Scholar
Tay ML, Carter M, Bolam SM, Zeng N, Young SW (2022) Robotic-arm assisted unicompartmental knee arthroplasty system has a learning curve of 11 cases and increased operating time. Knee Surgery, Sport Traumatol Arthrosc. Epub ahead of print.
Vanlommel L, Neven E, Anderson MB, Bruckers L, Truijen J (2021) The initial learning curve for the ROSA® Knee System can be achieved in 6–11 cases for operative time and has similar 90-day complication rates with improved implant alignment compared to manual instrumentation in total knee arthroplasty. J Exp Orthop 8:119
Article
Google Scholar
Vermue H, Luyckx T, Winnock de Grave P, Ryckaert A, Cools AS, Himpe N, Victor J (2022) Robot-assisted total knee arthroplasty is associated with a learning curve for surgical time but not for component alignment, limb alignment and gap balancing. Knee Surg, Sport Traumatol Arthrosc 30:593–602
Article
Google Scholar
Victor J, Ghijselings S, Tajdar F, Van Damme G, Deprez P, Arnout N, Van Der Straeten C (2014) Total knee arthroplasty at 15–17 years: Does implant design affect outcome? Int Orthop 38:235–241
Article
Google Scholar
Young SW, Clarke HD, Graves SE, Liu YL, de Steiger RN (2015) Higher rate of revision in PFC sigma primary total knee arthroplasty with mismatch of femoro-tibial component sizes. J Arthroplasty 30:813–817
Article
Google Scholar