Abat F, Valles SL, Gelber PE, Polidori F, Jorda A, Garcia-Herreros S, Monllau JC, Sanchez-Ibanez JM (2015) An experimental study of muscular injury repair in a mouse model of notexin-induced lesion with EPI(R) technique. BMC Sports Sci Med Rehabil 7:7. doi:10.1186/s13102-015-0002-0
Article
PubMed
PubMed Central
Google Scholar
Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138(2):311–315
Article
CAS
PubMed
Google Scholar
Anderson JE (2016) Hepatocyte growth factor and satellite cell activation. Adv Exp Med Biol 900:1–25. doi:10.1007/978-3-319-27511-6_1
Article
PubMed
Google Scholar
Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069. doi:10.1084/jem.20070075
Article
CAS
PubMed
PubMed Central
Google Scholar
Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A, Sinagra G, Giacca M (2004) Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 10(5):844–854
Article
CAS
PubMed
Google Scholar
Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157(1):137–148
Article
CAS
PubMed
PubMed Central
Google Scholar
Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A 95(26):15603–15607
Article
CAS
PubMed
PubMed Central
Google Scholar
Barton-Davis ER, Shoturma DI, Sweeney HL (1999) Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand 167(4):301–305. doi:10.1046/j.1365-201x.1999.00618.x
Article
CAS
PubMed
Google Scholar
Bedair HS, Karthikeyan T, Quintero A, Li Y, Huard J (2008) Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med 36(8):1548–1554. doi:10.1177/0363546508315470
Article
PubMed
Google Scholar
Beiner JM, Jokl P (2002) Muscle contusion injury and myositis ossificans traumatica. Clin Orthop Relat Res (403 Suppl):S110-119
Beiner JM, Jokl P, Cholewicki J, Panjabi MM (1999) The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 27(1):2–9
CAS
PubMed
Google Scholar
Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M, Cornelio F, Morandi L, Mantegazza R (1995) Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J Clin Invest 96(2):1137–1144. doi:10.1172/JCI118101
Article
CAS
PubMed
PubMed Central
Google Scholar
Best TM, Gharaibeh B, Huard J (2012) Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Br J Sports Med. doi:10.1136/bjsports-2012-091685
Google Scholar
Boldrin L, Elvassore N, Malerba A, Flaibani M, Cimetta E, Piccoli M, Baroni MD, Gazzola MV, Messina C, Gamba P, Vitiello L, de Coppi P (2007) Satellite cells delivered by micro-patterned scaffolds: a new strategy for cell transplantation in muscle diseases. Tissue Eng 13(2):253–262
Article
CAS
PubMed
Google Scholar
Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C, Lichtman JW, Vandenburgh HH, Mooney DJ (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci U S A 107(8):3287–3292. doi:10.1073/pnas.0903875106
Article
CAS
PubMed
PubMed Central
Google Scholar
Borselli C, Cezar CA, Shvartsman D, Vandenburgh HH, Mooney DJ (2011) The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32(34):8905–8914. doi:10.1016/j.biomaterials.2011.08.019
Article
CAS
PubMed
PubMed Central
Google Scholar
Burks TN, Andres-Mateos E, Marx R, Mejias R, Van Erp C, Simmers JL, Walston JD, Ward CW, Cohn RD (2011) Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci Transl Med 3(82):82ra37. doi:10.1126/scitranslmed.3002227
Article
PubMed
PubMed Central
CAS
Google Scholar
Cezar CA, Roche ET, Vandenburgh HH, Duda GN, Walsh CJ, Mooney DJ (2016) Biologic-free mechanically induced muscle regeneration. Proc Natl Acad Sci U S A 113(6):1534–1539. doi:10.1073/pnas.1517517113
Article
CAS
PubMed
Google Scholar
Chan YS, Li Y, Foster W, Horaguchi T, Somogyi G, Fu FH, Huard J (2003) Antifibrotic effects of suramin in injured skeletal muscle after laceration. J Appl Physiol 95(2):771–780. doi:10.1152/japplphysiol.00915.2002
Article
CAS
PubMed
Google Scholar
Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238
Article
CAS
PubMed
Google Scholar
Chazaud B (2010) Dual effect of HGF on satellite/myogenic cell quiescence. Focus on "High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo". Am J Physiol Cell Physiol 298(3):C448–C449. doi:10.1152/ajpcell.00561.2009
Article
CAS
PubMed
Google Scholar
Chazaud B (2014) Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 219(3):172–178. doi:10.1016/j.imbio.2013.09.001
Article
CAS
PubMed
Google Scholar
Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA, Gherardi RK (2003) Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol 163(5):1133–1143. doi:10.1083/jcb.200212046
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CW, Corselli M, Peault B, Huard J (2012) Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotechnol 2012:597439. doi:10.1155/2012/597439
PubMed
PubMed Central
Google Scholar
Collins CA (2006) Satellite cell self-renewal. Curr Opin Pharmacol 6(3):301–306
Article
CAS
PubMed
Google Scholar
Cossu G, Sampaolesi M (2007) New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol Med 13(12):520–526
Article
CAS
PubMed
Google Scholar
Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, Noviello M, Roostalu U, Natali Sora MG, Scarlato M, De Pellegrin M, Godi C, Giuliani S, Ciotti F, Tonlorenzi R, Lorenzetti I, Rivellini C, Benedetti S, Gatti R, Marktel S, Mazzi B, Tettamanti A, Ragazzi M, Imro MA, Marano G, Ambrosi A, Fiori R, Sormani MP, Bonini C, Venturini M, Politi LS, Torrente Y, Ciceri F (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med. doi:10.15252/emmm.201505636
Google Scholar
Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM, Tarnopolsky MA (2012) Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med 4(119):119ra113. doi:10.1126/scitranslmed.3002882
Article
CAS
Google Scholar
Crisco JJ, Jokl P, Heinen GT, Connell MD, Panjabi MM (1994) A muscle contusion injury model. Biomechanics, physiology, and histology. Am J Sports Med 22(5):702–710
Article
CAS
PubMed
Google Scholar
Darby IA, Zakuan N, Billet F, Desmouliere A (2016) The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci 73(6):1145–1157. doi:10.1007/s00018-015-2110-0
Article
CAS
PubMed
Google Scholar
Deasy BM, Feduska JM, Payne TR, Li Y, Ambrosio F, Huard J (2009) Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 17(10):1788–1798. doi:10.1038/mt.2009.136
Article
CAS
PubMed
PubMed Central
Google Scholar
Desmouliere A, Gabbiani G (1995) Myofibroblast differentiation during fibrosis. Exp Nephrol 3(2):134–139
CAS
PubMed
Google Scholar
Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15(12):666–673
Article
CAS
PubMed
Google Scholar
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015a) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059. doi:10.1002/cphy.c140068
Article
PubMed
Google Scholar
Dumont NA, Wang YX, Rudnicki MA (2015b) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142(9):1572–1581. doi:10.1242/dev.114223
Article
CAS
PubMed
PubMed Central
Google Scholar
Engebretsen L, Steffen K, Alsousou J, Anitua E, Bachl N, Devilee R, Everts P, Hamilton B, Huard J, Jenoure P, Kelberine F, Kon E, Maffulli N, Matheson G, Mei-Dan O, Menetrey J, Philippon M, Randelli P, Schamasch P, Schwellnus M, Vernec A, Verrall G (2010) IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med 44(15):1072–1081. doi:10.1136/bjsm.2010.079822
Article
PubMed
Google Scholar
Engert JC, Berglund EB, Rosenthal N (1996) Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135(2):431–440
Article
CAS
PubMed
Google Scholar
Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044
Article
CAS
PubMed
Google Scholar
Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11(16):2040–2051
Article
CAS
PubMed
PubMed Central
Google Scholar
Frey SP, Jansen H, Raschke MJ, Meffert RH, Ochman S (2012) VEGF improves skeletal muscle regeneration after acute trauma and reconstruction of the limb in a rabbit model. Clin Orthop Relat Res 470(12):3607–3614. doi:10.1007/s11999-012-2456-7
Article
PubMed
PubMed Central
Google Scholar
Fukushima K, Badlani N, Usas A, Riano F, Fu F, Huard J (2001) The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 29(4):394–402
CAS
PubMed
Google Scholar
Garg K, Corona BT, Walters TJ (2015) Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol 6:87. doi:10.3389/fphar.2015.00087
Article
PubMed
PubMed Central
CAS
Google Scholar
Garrett WE Jr, Seaber AV, Boswick J, Urbaniak JR, Goldner JL (1984) Recovery of skeletal muscle after laceration and repair. J Hand Surg 9(5):683–692
Article
Google Scholar
Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081. doi:10.1126/science.1191035
Article
CAS
PubMed
PubMed Central
Google Scholar
Grounds MD (1999) Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol 12(5):535–543
Article
CAS
PubMed
Google Scholar
Hamid MS, Yusof A, Mohamed Ali MR (2014) Platelet-rich plasma (PRP) for acute muscle injury: a systematic review. PLoS One 9(2), e90538. doi:10.1371/journal.pone.0090538
Article
PubMed
CAS
Google Scholar
Hammond JW, Hinton RY, Curl LA, Muriel JM, Lovering RM (2009) Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med 37(6):1135–1142. doi:10.1177/0363546508330974
Article
PubMed
PubMed Central
Google Scholar
Hill E, Boontheekul T, Mooney DJ (2006) Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng 12(5):1295–1304
Article
CAS
PubMed
Google Scholar
Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A(5):822–832
PubMed
Google Scholar
Hurme T, Kalimo H (1992) Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc 24(2):197–205
Article
CAS
PubMed
Google Scholar
Hwang OK, Park JK, Lee EJ, Lee EM, Kim AY, Jeong KS (2016) Therapeutic effect of losartan, an angiotensin II type 1 receptor antagonist, on CCl(4)-induced skeletal muscle injury. Int J Mol Sci 17(2):227. doi:10.3390/ijms17020227
Article
PubMed
PubMed Central
Google Scholar
Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen M (2005) Muscle injuries: biology and treatment. Am J Sports Med 33(5):745–764. doi:10.1177/0363546505274714
Article
PubMed
Google Scholar
Jeon OH, Elisseeff J (2016) Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Deliv Transl Res 6(2):105–120. doi:10.1007/s13346-015-0266-7
Article
CAS
PubMed
Google Scholar
Karvinen H, Pasanen E, Rissanen TT, Korpisalo P, Vahakangas E, Jazwa A, Giacca M, Yla-Herttuala S (2011) Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle. Gene Ther 18(12):1166–1172. doi:10.1038/gt.2011.66
Article
CAS
PubMed
Google Scholar
Kasemkijwattana C, Menetrey J, Somogyl G, Moreland MS, Fu FH, Buranapanitkit B, Watkins SC, Huard J (1998) Development of approaches to improve the healing following muscle contusion. Cell Transplant 7(6):585–598
Article
CAS
PubMed
Google Scholar
Kasemkijwattana C, Menetrey J, Bosch P, Somogyi G, Moreland MS, Fu FH, Buranapanitkit B, Watkins SS, Huard J (2000) Use of growth factors to improve muscle healing after strain injury. Clin Orthop 370:272–285
Article
PubMed
Google Scholar
Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48(8):1079–1096
Article
CAS
PubMed
Google Scholar
Kumar A, Chaudhry I, Reid MB, Boriek AM (2002) Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 277(48):46493–46503. doi:10.1074/jbc.M203654200
Article
CAS
PubMed
Google Scholar
Law PK, Bertorini TE, Goodwin TG, Chen M, Fang QW, Li HJ, Kirby DS, Florendo JA, Herrod HG, Golden GS (1990) Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet 336(8707):114–115
Article
CAS
PubMed
Google Scholar
Lee C, Fukushima K, Usas A, Xin L, Pelinkovic D, Martinek V, Huard J (2000) Biological intervention based on cell and gene therapy to improve muscle healing after laceration. J Musculoskelet Res 4(4):256–277
Article
Google Scholar
Lehto MU, Jarvinen MJ (1991) Muscle injuries, their healing process and treatment. Ann Chir Gynaecol 80(2):102–108
CAS
PubMed
Google Scholar
Lehto M, Sims TJ, Bailey AJ (1985) Skeletal muscle injury--molecular changes in the collagen during healing. Res Exp Med 185(2):95–106
Article
CAS
Google Scholar
Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA, Rossi FM (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21(7):786–794. doi:10.1038/nm.3869
Article
CAS
PubMed
Google Scholar
Li Y, Huard J (2002) Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol 161(3):895–907. doi:10.1016/S0002-9440(10)64250-2
Article
PubMed
PubMed Central
Google Scholar
Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164(3):1007–1019
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J (2007) Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther 15(9):1616–1622. doi:10.1038/sj.mt.6300250
Article
CAS
PubMed
Google Scholar
Li H, Hicks JJ, Wang L, Oyster N, Philippon MJ, Hurwitz S, Hogan MV, Huard J (2016) Customized platelet-rich plasma with transforming growth factor beta1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials 87:147–156. doi:10.1016/j.biomaterials.2016.02.017
Article
CAS
PubMed
Google Scholar
Lipton BH, Schultz E (1979) Developmental fate of skeletal muscle satellite cells. Science 205(4412):1292–1294
Article
CAS
PubMed
Google Scholar
Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Munoz-Canoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21. doi:10.1186/2044-5040-1-21
Article
PubMed
PubMed Central
Google Scholar
McLennan IS (1996) Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J Anat 188(Pt 1):17–28
PubMed
PubMed Central
Google Scholar
Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R, Nagaraja H, Stephens R, Lantry L, Morris GE, Burghes AH (1995) Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N Engl J Med 333(13):832–838
Article
CAS
PubMed
Google Scholar
Menetrey J, Kasemkijwattana C, Fu FH, Moreland MS, Huard J (1999) Suturing versus immobilization of a muscle laceration. A morphological and functional study in a mouse model. Am J Sports Med 27(2):222–229
CAS
PubMed
Google Scholar
Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Vogt M, Fu FH, Moreland MS, Huard J (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br 82(1):131–137
Article
CAS
PubMed
Google Scholar
Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 22(5):1008–1017. doi:10.1038/mt.2014.26
Article
CAS
PubMed
PubMed Central
Google Scholar
Messina S, Mazzeo A, Bitto A, Aguennouz M, Migliorato A, De Pasquale MG, Minutoli L, Altavilla D, Zentilin L, Giacca M, Squadrito F, Vita G (2007) VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J 21(13):3737–3746. doi:10.1096/fj.07-8459com
Article
CAS
PubMed
Google Scholar
Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278(1):C174–C181
CAS
PubMed
Google Scholar
Mourkioti F, Rosenthal N (2005) IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 26(10):535–542. doi:10.1016/j.it.2005.08.002
Article
CAS
PubMed
Google Scholar
Munoz-Canoves P, Serrano AL (2015) Macrophages decide between regeneration and fibrosis in muscle. Trends Endocrinol Metab 26(9):449–450. doi:10.1016/j.tem.2015.07.005
Article
CAS
PubMed
Google Scholar
Musaro A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N (1999) IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400(6744):581–585
Article
CAS
PubMed
Google Scholar
Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27(2):195–200
Article
CAS
PubMed
Google Scholar
Musaro A, Giacinti C, Borsellino G, Dobrowolny G, Pelosi L, Cairns L, Ottolenghi S, Cossu G, Bernardi G, Battistini L, Molinaro M, Rosenthal N (2004) Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci U S A 101(5):1206–1210
Article
CAS
PubMed
PubMed Central
Google Scholar
Ota S, Uehara K, Nozaki M, Kobayashi T, Terada S, Tobita K, Fu FH, Huard J (2011) Intramuscular transplantation of muscle-derived stem cells accelerates skeletal muscle healing after contusion injury via enhancement of angiogenesis. Am J Sports Med 39(9):1912–1922. doi:10.1177/0363546511415239
Article
PubMed
Google Scholar
Park JK, Ki MR, Lee EM, Kim AY, You SY, Han SY, Lee EJ, Hong IH, Kwon SH, Kim SJ, Rando TA, Jeong KS (2012) Losartan improves adipose tissue-derived stem cell niche by inhibiting transforming growth factor-beta and fibrosis in skeletal muscle injury. Cell Transplant 21(11):2407–2424. doi:10.3727/096368912X637055
Article
PubMed
Google Scholar
Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337(6203):176–179
Article
CAS
PubMed
Google Scholar
Powell CA, Smiley BL, Mills J, Vandenburgh HH (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283(5):C1557–C1565. doi:10.1152/ajpcell.00595.2001
Article
CAS
PubMed
Google Scholar
Proto JD, Tang Y, Lu A, Chen WC, Stahl E, Poddar M, Beckman SA, Robbins PD, Nidernhofer LJ, Imbrogno K, Hannigan T, Mars WM, Wang B, Huard J (2015) NF-kappaB inhibition reveals a novel role for HGF during skeletal muscle repair. Cell Death Dis 6, e1730. doi:10.1038/cddis.2015.66
Article
CAS
PubMed
PubMed Central
Google Scholar
Rantanen J, Ranne J, Hurme T, Kalimo H (1995) Denervated segments of injured skeletal muscle fibers are reinnervated by newly formed neuromuscular junctions. J Neuropathol Exp Neurol 54(2):188–194
Article
CAS
PubMed
Google Scholar
Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856. doi:10.1242/dev.069088
Article
CAS
PubMed
Google Scholar
Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, Maas M, Tol JL, Dutch Hamstring Injection Therapy Study I (2014) Platelet-rich plasma injections in acute muscle injury. N Engl J Med 370(26):2546–2547. doi:10.1056/NEJMc1402340
Article
CAS
PubMed
Google Scholar
Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, Maas M, Tol JL, Dutch HITsI (2015) Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study. Br J Sports Med 49(18):1206–1212. doi:10.1136/bjsports-2014-094250
Article
PubMed
Google Scholar
Rocheteau P, Vinet M, Chretien F (2015) Dormancy and quiescence of skeletal muscle stem cells. Results Probl Cell Differ 56:215–235. doi:10.1007/978-3-662-44608-9_10
Article
PubMed
Google Scholar
Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H, Tam AJ, Patel CH, Luber BS, Wang H, Wagner KR, Powell JD, Housseau F, Pardoll DM, Elisseeff JH (2016) Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352(6283):366–370. doi:10.1126/science.aad9272
Article
CAS
PubMed
PubMed Central
Google Scholar
Saera-Vila A, Kish PE, Kahana A (2016) Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish. Cell Signal 28(9):1196–1204. doi:10.1016/j.cellsig.2016.06.001
Article
CAS
PubMed
Google Scholar
Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656. doi:10.1242/dev.067587
Article
CAS
PubMed
Google Scholar
Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579
Article
CAS
PubMed
Google Scholar
Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1(1):4. doi:10.1186/2044-5040-1-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Scholz D, Thomas S, Sass S, Podzuweit T (2003) Angiogenesis and myogenesis as two facets of inflammatory post-ischemic tissue regeneration. Mol Cell Biochem 246(1-2):57–67
Article
CAS
PubMed
Google Scholar
Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23(2):239–245
Article
CAS
PubMed
Google Scholar
Skuk D, Goulet M, Roy B, Piette V, Cote CH, Chapdelaine P, Hogrel JY, Paradis M, Bouchard JP, Sylvain M, Lachance JG, Tremblay JP (2007) First test of a "high-density injection" protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 17(1):38–46. doi:10.1016/j.nmd.2006.10.003
Article
PubMed
Google Scholar
Taniguti AP, Pertille A, Matsumura CY, Santo Neto H, Marques MJ (2011) Prevention of muscle fibrosis and myonecrosis in mdx mice by suramin, a TGF-beta1 blocker. Muscle Nerve 43(1):82–87. doi:10.1002/mus.21869
Article
CAS
PubMed
Google Scholar
Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267(1):107–114. doi:10.1006/excr.2001.5252
Article
CAS
PubMed
Google Scholar
Tedesco FS, Cossu G (2012) Stem cell therapies for muscle disorders. Curr Opin Neurol 25(5):597–603. doi:10.1097/WCO.0b013e328357f288
Article
PubMed
Google Scholar
Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120(1):11–19. doi:10.1172/JCI40373
Article
CAS
PubMed
PubMed Central
Google Scholar
Terada S, Ota S, Kobayashi M, Kobayashi T, Mifune Y, Takayama K, Witt M, Vadala G, Oyster N, Otsuka T, Fu FH, Huard J (2013) Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am 95(11):980–988. doi:10.2106/JBJS.L.00266
Article
PubMed
Google Scholar
Tidball JG (1995) Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 27(7):1022–1032
Article
CAS
PubMed
Google Scholar
Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288(2):R345–R353. doi:10.1152/ajpregu.00454.2004
Article
CAS
PubMed
Google Scholar
Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1(4):2029–2062. doi:10.1002/cphy.c100092
PubMed
Google Scholar
Tidball JG, Wehling-Henricks M (2007) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 578(Pt 1):327–336. doi:10.1113/jphysiol.2006.118265
Article
CAS
PubMed
Google Scholar
Tidball JG, Welc SS (2015) Macrophage-Derived IGF-1 Is a Potent Coordinator of Myogenesis and Inflammation in Regenerating Muscle. Mol Ther 23(7):1134–1135. doi:10.1038/mt.2015.97
Article
CAS
PubMed
PubMed Central
Google Scholar
Toumi H, Best TM (2003) The inflammatory response: friend or enemy for muscle injury? Br J Sports Med 37(4):284–286
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, Eriksson JE, Kalimo H (2001) The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol 60(6):588–597
Article
CAS
PubMed
Google Scholar
Walczak BE, Johnson CN, Howe BM (2015) Myositis Ossificans. J Am Acad Orthop Surg 23(10):612–622. doi:10.5435/JAAOS-D-14-00269
Article
PubMed
Google Scholar
Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137(7):1017–1033. doi:10.1242/dev.038711
Article
CAS
PubMed
PubMed Central
Google Scholar
Yablonka-Reuveni Z, Balestreri TM, Bowen-Pope DF (1990) Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J Cell Biol 111(4):1623–1629
Article
CAS
PubMed
Google Scholar
Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. doi:10.1152/physrev.00043.2011
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao W, Lu H, Wang X, Ransohoff RM, Zhou L (2016) CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB J 30(1):380–393. doi:10.1096/fj.14-270090
Article
PubMed
Google Scholar
Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Peault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25(9):1025–1034. doi:10.1038/nbt1334
Article
CAS
PubMed
Google Scholar