Agricola R, Heijboer MP, Ginai AZ, Roels P, Zadpoor AA, Verhaar JA, Weinans H, Waarsing JH (2014) A cam deformity is gradually acquired during skeletal maturation in adolescent and young male soccer players: a prospective study with minimum 2-year follow-up. Am J Sports Med 42(4):798–806
Article
PubMed
Google Scholar
Baranto A, Ekstrom L, Hellstrom M, Lundin O, Holm S, Sward L (2005a) Fracture patterns of the adolescent porcine spine: an experimental loading study in bending-compression. Spine (Phila Pa 1976) 30(1):75–82
Google Scholar
Baranto A, Ekstrom L, Holm S, Hellstrom M, Hansson HA, Sward L (2005b) Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration. Clin Biomech (Bristol, Avon) 20(10):1046–1054
Article
Google Scholar
Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871
Article
CAS
PubMed
Google Scholar
Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26(8):969–990
Article
CAS
PubMed
Google Scholar
Bergmann G, Graichen F, Rohlmann A (2004) Hip joint contact forces during stumbling. Langenbecks Arch Surg 389(1):53–59
Article
CAS
PubMed
Google Scholar
Caine D, DiFiori J, Maffulli N (2006) Physeal injuries in children’s and youth sports: reasons for concern? Br J Sports Med 40(9):749–760
Article
PubMed Central
CAS
PubMed
Google Scholar
Chung SM, Batterman SC, Brighton CT (1976) Shear strength of the human femoral capital epiphyseal plate. J Bone Joint Surg Am 58(1):94–103
CAS
PubMed
Google Scholar
Cleather DJ, Goodwin JE, Bull AM (2013) Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech (Bristol, Avon) 28(1):98–103
Article
Google Scholar
Dodds MK, Lee J, McCormack D (2008) Transarticular stabilization of the immature femoral head: assessment of a novel surgical approach to the dislocating pediatric hip in a porcine model. J Pediatr Orthop 28(1):36–42
Article
PubMed
Google Scholar
Hosalkar HS, Varley ES, Glaser DA, Farnsworth CL, Wenger DR (2011) Intracapsular hip pressures in a porcine model: does position and volume matter? J Pediatr Orthop B 20(5):278–283
Article
PubMed
Google Scholar
Ipsen BJ, Williams JL, Harris MJ, Schmidt TL (2002) Shear Strength of the Pig Capital Femoral Epiphyseal Plate: An Experimental Model for Human Slipped Capital Femoral Epiphysis Fixation Studies. Paper presented at the ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, USA
Google Scholar
Jonasson P, Ekstrom L, Sward A, Sansone M, Ahlden M, Karlsson J, Baranto A (2014) Strength of the porcine proximal femoral epiphyseal plate: the effect of different loading directions and the role of the perichondrial fibrocartilaginous complex and epiphyseal tubercle - an experimental biomechanical study. J Exp Orthop 1(1):4
Article
Google Scholar
Kaeding CC, Miller T (2013) The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am 95(13):1214–1220
Article
PubMed
Google Scholar
Kaigle A, Ekstrom L, Holm S, Rostedt M, Hansson T (1998) In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration. J Spinal Disord 11(1):65–70
Article
CAS
PubMed
Google Scholar
Karlsson L, Lundin O, Ekstrom L, Hansson T, Sward L (1998) Injuries in adolescent spine exposed to compressive loads: an experimental cadaveric study. J Spinal Disord 11(6):501–507
Article
CAS
PubMed
Google Scholar
Kishan S, Upasani V, Mahar A, Oka R, Odell T, Rohmiller M, Newton P, Wenger D (2006) Biomechanical stability of single-screw versus two-screw fixation of an unstable slipped capital femoral epiphysis model: effect of screw position in the femoral neck. J Pediatr Orthop 26(5):601–605
Article
PubMed
Google Scholar
Kosashvili Y, Backstein D, Safir O, Ran Y, Loebenberg MI, Ziv YB (2008) Hemiarthroplasty of the hip for fracture-what is the appropriate sized femoral head? Injury 39(2):232–237
Article
PubMed
Google Scholar
Lundin O, Ekstrom L, Hellstrom M, Holm S, Sward L (2000) Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults. Eur Spine J 9(6):466–471
Article
PubMed Central
CAS
PubMed
Google Scholar
Lundin O, Hellstrom M, Nilsson I, Sward L (2001) Back pain and radiological changes in the thoraco-lumbar spine of athletes. A long-term follow-up. Scand J Med Sci Sports 11(2):103–109
Article
CAS
PubMed
Google Scholar
Malina RM (1969) Exercise as an influence upon growth. Review and critique of current concepts. Clin Pediatr 8(1):16–26
Article
CAS
Google Scholar
Meijer E, Bertholle CP, Oosterlinck M, van der Staay FJ, Back W, van Nes A (2014) Pressure mat analysis of the longitudinal development of pig locomotion in growing pigs after weaning. BMC Vet Res 10:37
Article
PubMed Central
PubMed
Google Scholar
Pawaskar SS, Grosland NM, Ingham E, Fisher J, Jin Z (2011) Hemiarthroplasty of hip joint: An experimental validation using porcine acetabulum. J Biomech 44(8):1536–1542
Article
PubMed
Google Scholar
Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10
CAS
PubMed
Google Scholar
Siebenrock KA, Ferner F, Noble PC, Santore RF, Werlen S, Mamisch TC (2011) The cam-type deformity of the proximal femur arises in childhood in response to vigorous sporting activity. Clin Orthop Relat Res 469(11):3229–3240
Article
PubMed Central
CAS
PubMed
Google Scholar
Siebenrock KA, Schwab JM (2013) The cam-type deformity–what is it: SCFE, osteophyte, or a new disease? J Pediatr Orthop 33(Suppl 1):S121–125
Article
PubMed
Google Scholar
Siebenrock KA, Wahab KHA, Werlen S, Kalhor M, Leunig M, Ganz R (2004) Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res 418:54–60
Article
PubMed
Google Scholar
Strobino LJ, French GO, Colonna PC (1952) The effect of increasing tensions on the growth of epiphyseal bone. Surg Gynecol Obstet 95(6):694–700
CAS
PubMed
Google Scholar
Sward L, Hellstrom M, Jacobsson B, Nyman R, Peterson L (1991) Disc degeneration and associated abnormalities of the spine in elite gymnasts. A magnetic resonance imaging study. Spine (Phila Pa 1976) 16(4):437–443
Article
CAS
Google Scholar
Tayton K (2009) The epiphyseal tubercle in adolescent hips. Acta Orthop 80(4):416–419
Article
PubMed Central
PubMed
Google Scholar
Thoreson O, Baranto A, Ekstrom L, Holm S, Hellstrom M, Sward L (2010) The immediate effect of repeated loading on the compressive strength of young porcine lumbar spine. Knee Surg Sports Traumatol Arthrosc 18(5):694–701
Article
PubMed
Google Scholar
Trueta J, Amato VP (1960) The vascular contribution to osteogenesis. III changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg Br 42-B:571–587
CAS
PubMed
Google Scholar
Upasani V, Kishan S, Oka R, Mahar A, Rohmiller M, Pring M, Wenger D (2006) Biomechanical analysis of single screw fixation for slipped capital femoral epiphysis: are more threads across the physis necessary for stability? J Pediatr Orthop 26(4):474–478
Article
PubMed
Google Scholar
Wenger D, Miyanji F, Mahar A, Oka R (2007) The mechanical properties of the ligamentum teres: a pilot study to assess its potential for improving stability in children’s hip surgery. J Pediatr Orthop 27(4):408–410
Article
PubMed
Google Scholar