Skip to main content

Table 2 Use of photopolymerizable hydrogels in vivo for applications in cartilage research

From: Translational applications of photopolymerizable hydrogels for cartilage repair

Hydrogels

Factors

Photoinitiators

Cells

Model

Follow-up

Results

References

Type

Wavelength (nm)

Time (min)

Intensity (mw/cm2)

PEODA/HAa,b

–

UV

–

7

4–5

hBMSCs

rabbit (full-thickness chondral defects)

4 weeks

Cartilage repair after 28 days, enhanced cellularity of de novo tissues that filled the defects

(Dua et al., 2016)

MeHAb

–

UV

360

–

1.2

rat BMSCs

mice (full-thickness chondral defects)

8 weeks

MeHA is biocompatible and osteoconductive, no sign of chondrocyte aggregation in the defects

(Lin et al., 2017)

mGL/MHAb

–

VL

430–490

4

1400

hBMSCs

rabbit (full-thickness osteochondral defects)

12 weeks

MSC chondrogenesis, optimal cartilage and bone formation using mGL/MHA at 9:1

(Lin et al., 2019)

PEG/MMP-2b

–

VL

352

8

5

rabbit BMSCs

rabbit (full-thickness osteochondral defects)

24 weeks

MSC chondrogenesis in vivo

(Pascual-Garrido et al., 2019)

PEODA/HAb

–

UV

365

5

6–8

–

rabbit (full-thickness chondral defects)

5 weeks

Cartilage repair

(Ramaswamy et al., 2008b)

PEG/PCLa

–

VL

450

1

1000

human chondrocytes

rat (s.c.)

4 weeks

ECM deposition (type-II and -VI collagen, GAGs), cartilage repair

(Werkmeister et al., 2010)

PEODA/HAb

TGF-β3

UV

365

10

4

hBMSCs

mouse (s.c.)

3 weeks

Chondrogenic differentiation

(Sharma et al., 2007)

  1. aSynthetic photopolymerizable hydrogels; bnatural/synthetic (hybrid) photopolymerizable hydrogels. PEODA poly (ethylene oxide) diacrylate, HA hyaluronic acid, MeHA or MHA methacrylated HA, mGL methacrylated gelatin, PEG poly (ethylene glycol), MMP-2 matrix metalloproteinase 2, PCL poly(ε-caprolactone), TGF-β transforming growth factor beta, UV ultraviolet, VL visible light, MSCs mesenchymal stem cells, hBMSCs human bone marrow-derived MSCs, s.c. subcutaneous, ECM extracellular matrix, GAGs glycosaminoglycans