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Abstract

tion and prevention.

Purpose: Injuries are common in sports and can have significant physical, psychological and financial consequences.
Machine learning (ML) methods could be used to improve injury prediction and allow proper approaches to injury
prevention. The aim of our study was therefore to perform a systematic review of ML methods in sport injury predic-

Methods: A search of the PubMed database was performed on March 24th 2020. Eligible articles included original
studies investigating the role of ML for sport injury prediction and prevention. Two independent reviewers screened
articles, assessed eligibility, risk of bias and extracted data. Methodological quality and risk of bias were determined by
the Newcastle-Ottawa Scale. Study quality was evaluated using the GRADE working group methodology.

Results: Eleven out of 249 studies met inclusion/exclusion criteria. Different ML methods were used (tree-based
ensemble methods (n=9), Support Vector Machines (n=4), Artificial Neural Networks (n = 2)). The classification
methods were facilitated by preprocessing steps (n=5) and optimized using over- and undersampling methods
(n=06), hyperparameter tuning (n =4), feature selection (n=3) and dimensionality reduction (n=1). Injury predictive
performance ranged from poor (Accuracy =52%, AUC=0.52) to strong (AUC=0.87, f1-score =85%).

Conclusions: Current ML methods can be used to identify athletes at high injury risk and be helpful to detect the
most important injury risk factors. Methodological quality of the analyses was sufficient in general, but could be fur-
ther improved. More effort should be put in the interpretation of the ML models.

Keywords: Machine Learning, Injury prediction, Injury prevention, Sport injury

Background

Injuries are common in individual and team sports and
can have significant physical, psychosocial and financial
consequences [3, 13, 22]. Understanding injury risk fac-
tors and their interplay is thereby a key component of
preventing future injuries in sport [4]. An abundance
of research has attempted to identify injury risk factors
[4, 6, 28]. However, sports injuries are a consequence of
complex interactions of multiple risk factors and incit-
ing events making a comprehensive model necessary [6,
28]. It has to account for the events leading to the injury
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situation, as well as to include a description of body and
joint biomechanics at the time of injury [4]. Due to the
many interactions between intrinsic and extrinsic risk
factors as well as their sometimes highly unpredictable
nature (e.g., contact with another player), the ability to
foresee the occurrence of an inciting injury event is chal-
lenging. Therefore, predictive modelling should not only
focus on the prediction of the occurrence of an injury
itself but, moreover, it should try to identify injury risk at
an individual level and implement interventions to miti-
gate the level of risk [28]. In order to plan effective pre-
ventive intervention, it is therefore important to be aware
both of the various isolated risk factors and their interac-
tion [6].
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In recent years, the use of advanced Artificial Intelli-
gence (AI) methods has appeared in sports medicine to
tackle this challenging multi-faceted task [1, 5, 14, 16].
AI methods have already been used successfully in sports
science within the realm of game analysis, tactics, perfor-
mance analysis and outcome predictions [12, 17, 21] and
are about to start transforming clinical medicine [9, 31,
33, 39, 42]. However, for clinicians, the application and
the understanding of Al is often difficult [24]. Therefore,
the explanations of the core terms for Al application are
provided in Supplementary File S1.

Al is mostly narrowed down to Machine Learning (ML)
methods although it is a very broad concept comprising
every aspect of mimicking human intelligence. ML is the
study of algorithms that can automatically learn from
data to make new decisions [23]. Current ML methods
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include Neural Networks, Support Vector Machines, or
Random Forests which are part of a "Machine Learning
pipeline’ (Fig. 1). The available data for the ML model
has to be of high quality and can be any data deemed
useful for the purpose of injury prediction. This data is
split in two parts (data splitting), the so-called training
and test data. First, the algorithm has to learn the rela-
tionship between outcome of interest (injury or not) and
the potential contributing factors (also called predictors/
features/covariates/explanatory variables) from the train-
ing data set. The test data can then be used to test the
prediction capacity of the algorithm learned from the
training data. It is important that this quality check is not
achieved on the training data, but on unseen data, hence
the data splitting at the beginning. The quality and size
of the data sets are important parameters for the quality

‘l Athletes information

Dataset

Data Splitting

Training Dataset
Outcome
variable Features
(injury)

Outcome
Processed
variable
; Features
(injury)

; Under / Over samplmg w

v

ML Pipeline
Preprocessing ; Preprocessing
i (imputation, i Data (imputation, |
i standardization, ; Preprocessor . standardization, |
i discretization) ] discretization)
Hyper- ;
parameter ! Dimensionality ; Dimensionality
tuning reduction & | ; Data reduction &
& Feature : Processor Feature
Feature | selection (filter) ! selection (filter)
selection —[ ---------------------
(wrapper)
Procqsed Training%ataset

\% Train classification method "'—P Classifier

Test Dataset
Outcome
Features variable
{injury)

Processed Test
Dataset (Features)

Classify test data

Predicted
outcome

not always necessary

Feature
importance

Fig. 1 Schematic figure of the Machine Learning approach. The entire Machine Learning process is shown. Parts in dotted shapes are optional or

Risk factor
identification

Model
evaluation




Van Eetvelde et al. J EXP ORTOP (2021) 8:27

of the results. To improve the quality of these large and
complex datasets and to ensure optimal operation of the
ML algorithms, data preprocessing methods (imputation,
standardization, discretization), dimension reduction
and feature selection can be applied (see Supplementary
File S1). Most ML procedures further require parameter
tuning, a sort of optimization of parameters which can-
not be estimated directly from the data (e.g., number of
trees to be used in a Random Forest). When the entire
ML pipeline is fitted on the training data, the outcome
of the test data is predicted. Since we know the true out-
come of the test data, this allows us to evaluate our estab-
lished prediction model. Finally, well-performing models
provide an idea of the most important risk factors, by
observing which factors have the largest influence in
these models.

Considering that sport injury prediction and preven-
tion are trending topics in sport science [12, 13, 16], the
intention of this systematic review is to synthesize the
evidence of sophisticated ML algorithms in sport injury
prediction and prevention. Our systematic review differs
from the one by Claudino et al. [12] in that we focus on
injury prevention and risk factor identification together
with a deeper examination of the used ML analyses. The
following three topics are assessed:

1. Identify the currently used definition of ML as well as
predominantly used ML methods.

2. Identify the accuracy of the currently used ML meth-
ods to predict injury.

3. Evaluate the used methods for sport injury preven-
tion purposes.

Methods

This systematic review was performed in accordance with
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [30]. The
review protocol was prospectively registered at PROS-
PERO (International prospective register of systematic
reviews—ie, CRD42020177708).

Search strategy and inclusion/exclusion criteria

A systematic electronic search of the PubMed database
was executed on March 24th 2020 to identify studies
investigating Machine Learning methods in injury pre-
diction and prevention. The following search term was
used in all fields: (“deep learning” OR “artificial intel-
ligence” OR “machine learning” OR “neural network”
OR ,neural networks “ OR ,support vector machines
“ OR ,nearest neighbor “ OR ,nearest neighbors “ OR
»random forest “ OR ,random forests “ OR ,trees" OR
»elastic net “ OR ,ridge “ OR ,lasso “ OR ,boosting “ OR
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»predictive modeling “ OR “learning algorithms” OR
»bayesian logistic regression “) AND (“sport” OR ,sports
“ OR “athlete” OR “athletes”) AND (,injury “ OR "inju-
ries"). We did not use limits to perform the search and
no date restrictions were applied. Inclusion criteria were
as follows: (i) Original studies investigating the role of
machine learning for sport injury prediction and sport
injury prevention, (ii) English-language studies, (iii)
studies published online or in print in a peer-reviewed
journal. Injury prediction had to refer to predicting
either the occurrence, the severity, or the type of injuries
on the basis of risk factors. The exclusion criteria were
as follows: (i) not being sport-specific, (ii) not cover-
ing injury prevention or injury prediction, (iii) meeting
abstracts and proceedings. Also, studies were excluded
if the used approach was rather statistical than ML. This
explains why, for example, two papers from Hasler et al.
[19, 20] and one from Mendonga et al. [29] were not
included here.

Study selection

The titles and abstracts of all articles were screened for
relevance according to the inclusion and exclusion cri-
teria (L.M. and T.T.). If no abstract was available, the
full-text article was obtained to assess the relevance of
the study. The full text was subsequently reviewed for
possible inclusion in the systematic review for all arti-
cles that were not excluded during the initial screening
process. A third reviewer (H.E.) resolved between-
reviewer discrepancies. In addition to the electronic
search, the reference lists of all included articles and
review articles were manually searched (C.L., T.T,
H.E.) for additional relevant articles. Moreover, if any
systematic reviews on ML in sport injury prediction
and prevention were identified during the screening
process, the reference list was screened to identify any
further studies.

Methodological quality

Methodological quality and risk of bias of included stud-
ies were determined by the Newcastle-Ottawa Scale
(NOS) [45]. Eligible studies were independently rated by
two authors blind to the study authors and institutions
(L.M. and T.T.), with discrepancies resolved by a third
author (H.E.). The NOS contains eight categories relating
to methodological quality and each study was given an
eventual score out of a maximum of 8 points. A score of
0-3 points equated to a low quality study, a score of 4—6
points equated to a moderate quality study, with a score
of 7-8 points required for a study to be given a score of
high quality.
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Data extraction

Characteristics of all included studies (i.e. partici-
pants, type of study, sample size, etc.) and about ML
used (i.e. data pre-processing, classification method,
etc.) were extracted independently by two reviewers
(H.E. and C.L.), with a third (L.M.) resolving potential
discrepancies.

Data analysis

Two independent reviewers (L.M. and T.T.) assessed the
quality of evidence using the GRADE methodology [18].
In the current review, evidence started at moderate cer-
tainty, since investigation of publication bias was not pos-
sible due to the small number of included trials. Then it
was downgraded by one level for imprecision when the
analysed sample was <300 participants (serious impreci-
sion was downgraded by two levels); and by one level for
risk of bias when the mean NOS Score was<6 out of 9.
Between-reviewer discrepancies were resolved by a third
investigator (R.S.).

Results

In the scope of this systematic literature review, 246 arti-
cles were found, and an additional three articles added
by hand search from which a total of 11 articles were
included according to the strict inclusion/exclusion crite-
ria for this systematic review (Fig. 2).
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Study characteristics

Table 1 lists all details of the included studies. Studies
were prospective cohort studies (n=9) [2, 11, 25, 27,
32, 35, 36, 38, 41] or case—control studies (n=2) [41,
46]. Most of them were performed in soccer (n=4)
[2, 32, 35, 36] and Australian Football (z=3).[11, 27,
38] Two studies incorporated athletes from multiple
sports [25, 34]. The number of participants ranged
between 25 and 363. In seven studies, the athlete was
the unit of observation [2, 25, 32, 34, 35, 38, 46]. In the
remaining 4 studies, there were multiple observations
per player [11, 27, 36, 41]. Both occurrence (n=11)
[2, 11, 25, 27, 32, 34-36, 38, 41, 46] and type of injury
(n=2) (acute/overuse [35], contact/non-contact [27])
were evaluated, whereby lower limb muscle injury was
the most often assessed outcome [2, 25, 38] and only
one publication investigated specifically upper limb
injuries [46].

Study Quality

The methodological quality of the included studies
ranged from 5 to 8 in the NOS scale (Table 2). All studies
had proper ascertainment of outcome/exposure; follow-
up long enough for outcomes to occur, same method of
ascertainment for cases and controls; and adequacy of
follow-up of cohorts/non-response rate. Seven studies
(63.63%) were downgraded for methodological quality
due to imprecision and three (27.27%) because of risk of
bias (Table 3).
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Table 2 Methodological quality of the included studies using
the NOS scale [45]

Cohort studies Selection Comparability Outcome Conclusion

Oliver et al *rkk * . 8
Ayala et al *kwn xx 7
Lopez-Valenciano o *x% 7

etal
Rommers et al *rxk *x 7
Rossi et al ** P 5
Carey et al ** *xx 5
Ruddy et al Xk *x 8
Thornton et al ** *x% 5
McCullagh & Whit- **** > 7

fort
Case—control studies  Selection Comparability Exposure Conclusion
Rodas et al *xxx *xx 7
Whiteside et al Frkx *xx 7

Data analysis characteristics
In all 11 papers, the outcome variable was the occur-
rence of injury or the type of injury, which are categori-
cal variables, making the base models classification
models. From the 11 considered papers, 9 papers used
tree-based models [2, 11, 25, 32, 34-36, 38, 41], 4
papers used Support Vector Machines [11, 34, 38, 46]
and 2 papers used Artificial Neural Networks [27, 38].
Eight out of 9 papers using tree-based models applied a
bagging strategy [2, 11, 25, 32, 34, 36, 38, 41], whereof
5 used a Random Forest approach [11, 34, 36, 38, 41].
Four papers used boosting algorithms to construct tree
ensemble methods [2, 25, 32, 35].

The training, validation and test strategy for the used
ML approaches varied largely between the different

Table 3 Quality of Evidence according to GRADE [18]

Imprecision Risk of Conclusion
(n<300) bias
(NOS<6)
Oliver et al N (n=355) N=8 moderate-quality
Ayala et al Y (n=96) N=7 low-quality
Lopez-Valenciano Y (n=132) N=7 low-quality
etal
Rommers et al N (n=734) N=7 moderate-quality
Rossi et al Y (h=26) Y=5 very-low
Carey et al Y (n=133) Y=5 low-quality
Ruddy et al N (n=362) N=8 moderate-quality
Thornton et al Y (n=25) Y=5 very-low
McCullagh & Y (n=39) N=7 very-low
Whitfort
Rodas et al N (n=363) N=7 moderate-quality
Whiteside et al Y(nh=113) N=7 low-quality
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studies. For the evaluation and comparison of the
methods, 7 papers [2, 25, 27, 32, 34, 36, 46] used cross-
validation and 4 [11, 35, 38, 41] used a single data-split-
ting approach. Of the former, four [2, 25, 32, 36] used
stratified cross-validation, which may be especially of
interest in unbalanced data, because it ensures that in
both training and test set the number of positive cases
(injuries) is sufficiently high. In 4 papers [11, 34, 35,
38] the training dataset was split further for tuning the
hyperparameters. In 3 papers [11, 36, 37] the authors
repeated their entire analysis a large number of times to
adjust for the randomness in the resampling and under/
oversampling methods.

Three of the discussed papers used feature selection
methods [34, 36, 46]. Rodas et al. [34] used the LASSO
method for selecting significant features, Rossi et al. [36]
eliminated features by applying cross-validation on a sep-
arate part of the data, and Whiteside et al. [46] evaluated
all possible feature subsets. Carey et al. [11] used Princi-
pal Component Analysis for reducing the dimensionality
of the data instead of feature selection.

To adjust for imbalanced data, the training datasets
were over-and/or undersampled in 6 papers [2, 11, 25,
32, 36, 38]. All of them used oversampling of the minority
class (injuries) and 4 of them applied undersampling of
the majority class (non-injuries) [2, 11, 25, 32].

Data pre-processing was used in some papers to opti-
mize the performance of the classification methods. To
solve the missing values problem, three papers [2, 25, 34]
mentioned using imputation methods. In three papers [2,
25, 32], the continuous variables were transformed into
categorical variables, using cut-off values found in the lit-
erature or based on the data. There was only one paper
[37] that mentioned a standardization of the continuous
variables.

Some of the studies had small deficits in the Machine
Learning Pipeline approach. Four papers in this review
had multiple observations per athlete [11, 27, 36, 41]
and it seems that players may appear in both the train-
ing and test datasets, which would be a violation of the
rule that the training and test dataset should be inde-
pendent from each other. The results of these studies
can therefore not be generalized to a bigger popula-
tion. The other mistakes were made in the preprocess-
ing phase. Four papers [2, 25, 32, 38] seemed to perform
discretization or standardization on the entire dataset
(including test dataset), which in that case would be an
example of data leakage, i.e. using the test data in the
training process. This should be avoided since it does
not reflect reality as the test dataset has to be seen as
future data. On the other hand, Ruddy et al. [38] inde-
pendently standardized the training and test dataset.
Applying different transformations on the training and
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test dataset will cause non-optimal operation of the
classifier and can lead to lower predictive performance.
A structured overview of the data analysis characteris-
tics can be found in Table 4.

Performance in predicting injury occurrence

In Table 5, the study results characteristics are given
for each of the included papers. For predicting the
occurrence of the outcome (injury in general, muscle
injury, ...), seven papers used Area Under the ROC
Curve (AUC) as an evaluation measure [2, 11, 25, 32,
36, 38, 41], while the remaining four papers used only
metrics based on the confusion matrix, e.g. accuracy,
sensitivity, specificity, precision and fl-score. Eight out
of eleven studies [2, 25, 27, 32, 35, 36, 41, 46] reported
appropriate to good performance of the Machine
Learning prediction methods. AUC values for predict-
ing the outcome ranged between 0.64 and 0.87, and
high values were found for accuracy (75%—82.9%),
sensitivity (55.6%—94.5%), specificity (74.2%—87%)
and precision (50%—85%). Three papers [11, 34, 38]
reported low prediction potential for their built ML
models, showing low AUC (0.52—0.65) and accuracy
(52%) values.

Most important injury predictors

Analysed risk factors included both modifiable (train-
ing load, psychological and neuromuscular assessment,
stress level, ...) and non-modifiable (demographics,
genetic markers, anthropometric measurements, pre-
vious injury, ...) factors (for more details, see Table 1).
In 4 papers [2, 25, 32, 41], the authors have counted
the number of appearances of each feature in the final
ensemble of decision trees. Two papers [34, 46] counted
the number of times that a feature is selected by their
feature selection procedure. Rossi et al. [36] used the
decrease in Gini coefficient to measure the importance
of variables and Rommers et al. [35] used a SHAP sum-
mary plot [26]. This plot was based on the Shapley
values in game theory and shows the importance of
the variables, as well as the relation between high/low
feature values and high/low injury risk. Because of the
wide variety of features used over the different papers,
not much consistency was found in the reported
important predictors. The features that were reported
twice as important were previous injury [25, 36], higher
training load [36, 41], and higher body size (in youth
players only) [32, 35]. Note that lower training load
after previous injury might indicate a not fully recov-
ered athlete and can hence be considered being a risk
factor after previous injury [36].
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Discussion

The 11 studies included in this systematic review showed
that ML methods can be successfully applied for sport
injury prediction. The most promising results to predict
injury risk were obtained in elite youth football players
based on anthropometric, motor coordination and physi-
cal performance measures with a high accuracy of 85%
[35], and in professional soccer based on a pre-season
screening evaluation with a high sensitivity (77.8%) and
specificity (83.8%).[2] This is in opposition with several
authors who found that screening tests were not success-
ful in predicting sports injuries [40, 43]. These results
are promising in the sense that future models might help
coaches, physical trainers and medical practitioners in
the decision-making process for injury prevention.

Data inclusion was still limited in the analysed studies,
where only selected variables were included (e.g., only
anthropometric, motor coordination and physical per-
formance measures in the study by Rommers et al. [35]).
Nevertheless, the achieved accuracy was quite high and
future prediction might become even higher by using
smart machine learning approaches or by incorporating
more data (e.g., using sensors, more intense monitoring
of athletes) [44]. Future studies will need to refine the
target of injury prediction with AI/ML. This can either
be achieved with an increase of the number of different
injuries affecting a specific population or a study cohort
[35] or with a targeted inclusion of specific injuries with
a high injury incidence like hamstring injuries in football
or athletics [2, 38], or a high injury burden like anterior
cruciate ligament (ACL) injuries in pivoting sports or
ulnar collateral injuries in baseball [46]. The types and
number of injury risk factors to be included in these stud-
ies are manifold and vary for each target. Large datasets
may help the sports medicine community to improve the
understanding of the respective influence of each factor
on injury occurrence as well as their specific interactions
in a given environment, allowing for a more systemic
approach of sports injury prevention [6-8, 15].

In the new field of ML for sports injury prevention,
the level of quality of the published studies is of utmost
importance. The analysis of the methodological quality
of the 11 included studies indicates that they had very-
low to moderate methodological quality according to
the GRADE analysis. Imprecision (i.e., a study including
relatively few participants/events) is an issue that may
be improved with multicentric studies. Only 3 studies
[11, 36, 41] had a NOS score under 6 and only 1 study
[32] scored in comparability. In fact, the main reason
to a lower NOS score was lack of comparability, which
indicates that either cases and controls or exposed and
non-exposed individuals were not matched in the design
and/or confounders were not adjusted for in the analysis.
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Oliver et al., the only paper considering comparability,
recruited 6 professional football teams of the English
Premier League and Championship and followed 355
athletes [32]. Injured and non-injured players were com-
pared in all continuous variables and all 95% CI presented
had proper range, indicating adequate matching between
groups. Future studies should be aware of this common
limitation and include the comparison between groups.

In terms of ML methodology, the following observations
can be made from this review. (i) Tree-based models are
currently the most popular ML models in sports medicine.
They are easy to visualize and interpret, and they can be
extended to ensemble methods for boosting and bagging
purposes or adapted to be cost-sensitive. The two publica-
tions that did not use tree-based models were the first to
be published on the subject [27, 46], thereby confirming
the trend that more recent studies seem to adhere to this
methodology. (ii) Concerning training and evaluating the
ML models, a big variety between the 11 papers could be
noticed. It was surprising to see that only 4 papers [11, 34,
35, 38] mentioned having tuned the hyperparameters to
optimize the performance of the ML methods, since tun-
ing hyperparameters is recommendable (though not man-
datory) in order to take the most out of the ML methods.
The other studies may have used values from the literature
or the default values from the used software, which may
have led to a failure to identify the optimal model. (iii) The
findings from this review further reveal that future stud-
ies involving ML approaches in the field of sports injury
prevention should aim for a higher methodological quality.
One of the identified deficits of the analysed studies was
the dependency between training and test datasets.

The predictive performance of the considered publica-
tions was very heterogeneous. It should be emphasized
that the reported predictive performances cannot be seen
as a quality measure of the ML analysis per se, because
they are depending on many other factors, like the kind of
included risk factors, the design of the study, the sample
size or the unit of observation. This also appeared when
the publications of Ayala et al. [2], Lopez-Valenciano
et al. [25] and Oliver et al. [32] were compared to each
other. They used similar preprocessing and processing
steps and classification trees, but reported very different
performance values (AUC ranging from 0.663 to 0.873).
Furthermore, the reported measures (AUC, accuracy,
sensitivity, specificity) might not be the best measures to
evaluate the prediction models, since these measures only
see black and white (injured or not injured), while proba-
bilistic scoring rules, such as the Brier Score and the Log-
arithmic Loss, would be able to evaluate the exactness of
a predicted probability (e.g. this player has 30% chance to
get injured) as is stated by Carey et al.[10]. From a clinical
point of view, it could be more informative to know the
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probability of injury instead of only the classification into
a high or low risk profile.

When dealing with injury prediction and prevention,
it is important to identify especially modifiable risk fac-
tors, which can be intrinsic or extrinsic [28]. While some
studies did not provide any information on the relative
importance or influence of an individual risk factor, oth-
ers used the number of times that a considered variable
appeared in the ensemble of decision trees. Rossi et al.
[36] measured how much the predictive performance of
an algorithm would decrease if a specific variable would
be left out as a predictor. Rommers et al. [35] provided
a visualisation of the influence of the risk factors on the
predicted injury risk. Therefore, it appeared that more
efforts should be done to understand the relative weight
of individual risk factors on the injury risk. This approach
may help guiding practitioners to apply targeted inter-
ventions to the athletes at high injury risk.

Limitations of the systematic review

Besides investigating the outcome of machine learning
algorithms in injury prediction and prevention, this sys-
tematic review also focused on the methodology of AI/
ML studies, which makes some parts probably challeng-
ing to read for sports medicine clinicians. To avoid mis-
interpretation, a brief summary of AI/ML methods was
included. It is important to stress that a previous review
of Claudino et al. [12] about the use of Al in team sports
provided a first overview of the topic, however it included
methods that were used in a clearly statistical way, such as
Bayesian logistic regression and single decision tree classi-
fiers. Using this categorization implies that studies which
were performed before the era of AI/ML and including
statistical methods like linear or logistic regression would
need to be considered to get a complete overview of the
topic. This would seriously dilute true ML approaches.
Another limitation is the fact that only PubMed database
was included in this review. Even though, more relevant
studies were found compared to reviews using other data-
bases, such as e.g. in Claudino et al. [12].

Conclusion

This systematic review showed that ML methods may be
used to identify athletes at high injury risk during sport
participation and that it may be helpful to identify risk
factors. However, although the majority of the analysed
studies did apply machine learning methods properly to
predict injuries, the methodological study quality was
moderate to very low. Sports injury prediction is a grow-
ing area and further developments in this promising field
should be encouraged with respect to the big potential of
AI/ML methods.
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