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Abstract

males, and thirteen 42 mm and 8 38 mm glenospheres.

tensioning, Abduction, External rotation, Scaption

Purpose: Instability and fractures may result from tensioning errors during reverse total shoulder arthroplasty
(RTSA). To help understand tension, we measured intraoperative glenohumeral contact forces (GHCF) during RTSA.

Methods: Twenty-six patients underwent RTSA, and a strain gauge was attached to a baseplate, along with a trial
glenosphere. GHCF were measured in passive neutral, flexion, abduction, scaption, and external rotation (ER). Five
patients were excluded due to wire issues. The average age was 70 (range, 54-84), the average height was 169.5
cm (range, 154.9-182.9), and the average weight was 82.7 kg (range, 45.4-129.3). There were 11 females and 10

Results: The mean GHCF values were 135N at neutral, 123 N at ER, 165 N in flexion, 110 N in scaption, and 205 N in
abduction. The mean force at terminal abduction is significantly greater than at terminal ER and scaption (p < 0.05).

Conclusions: These findings could help reduce inappropriate tensioning.

Keywords: Intraoperative glenohumeral contact forces, Reverse total shoulder arthroplasty, Intraoperative

Background

Reverse total shoulder arthroplasty (RTSA) has become
a widely used treatment for a variety of conditions,
including cuff-tear arthropathy [5], pseudoparesis due to
massive rotator cuff tear [29], fracture [7], rheumatoid
arthritis [35], revision of failed total shoulder arthro-
plasty [33], and osteoarthritis with glenoid wear [17].
Despite the increasingly widespread use and excellent
short-term outcomes, there are numerous studies detail-
ing the complications associated with RTSA. Recurrent
prosthetic instability accounts for a large percentage of
these complications in some studies [9, 11, 14]. Disloca-
tion rates ranging from 2.4% to 31% have been reported,
and early dislocation rates (< 3 months postoperative)
have been reported at 2.9% [7-10, 18, 34]. The etiology
of recurrent RTSA instability may be multifactorial, but
one factor often cited is inadequate soft-tissue tension
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[9, 16, 20, 31]. In his groundbreaking article, Grammont
coined the term “global decoaptation,” and described the
situation as recurrent instability due to lack of sufficient
deltoid tension [16, 19]. Intraoperative assessment of
soft-tissue tension remains subjective to this day, with
no reproducible method of assessment.

Although insufficient soft-tissue tensioning remains
problematic, excessive soft-tissue tension can lead to com-
plications as well. Complications of excessive soft-tissue
tensioning include acromial fracture [26], brachial plexus
injury [24], and excessive shear force on the glenoid/base-
plate interface [1]. Postoperative acromial fractures have
been reported following RTSA from 1% to 7% of patients
[4, 12, 13, 15, 21-23, 26, 32, 34]. These fractures are
thought to be secondary to increased stress and tension
on the deltoid [21, 23, 26]. Acromial fractures can lead to
a painful shoulder and decreased functional outcomes,
but, to date, the role of soft-tissue tension in their devel-
opment is not well understood.

Biomechanical studies using cadavers [1] and motion
capture [28] have been developed that model glenohumeral
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contact forces (GHCEF) following RTSA. To our knowledge,
no studies have directly measured intraoperative GHCEF.
There have been numerous studies looking at hip and knee
contact forces using instrumented implants [25]. Bergman
et al. measured GHCEF following implantation of an instru-
mented hemiarthroplasty 7 months postoperatively [2]. No
similar studies have been performed looking at RTSA
implants.

The purpose of this study was to measure the intraop-
erative GHCF during passive range of motion during
implantation of a RTSA. This data could help provide
valuable information for proper intraoperative soft-tissue
tensioning. Having the ability to assess intraoperative
soft-tissue tension better could lead to better outcomes
and fewer complications following RTSA.

Methods

Data collection

After obtaining institutional review board approval, 26
patients with a planned primary RTSA were enrolled in
this study. Inclusion criteria were patients undergoing
primary RTSA. Exclusion criteria were revision cases,
acute fractures, and severe bony deformity. Five of the
26 patients’ data were not available due to technical
problems (mostly broken wires), leaving 21 shoulders in
21 patients in our data series.

Measurements

Measurements were comprised of the collection of intra-
operative joint forces and motions. For joint force mea-
surements, an instrumented trial implant of the RTSA
system (EQUINOXE, Exactech, Inc., Gainesville, FL) was
used, which has been validated in a cadaveric model
[27]. The trial instrumented implant was designed to
attach to the implanted baseplate already fixed to the
glenoid. The specially designed trial glenosphere was
then fixed to the instrumented implant (Fig. 1a-b). The
outer dimensions of the instrumented trial implant are
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identical to those of the prosthesis that is used clinically
[30]. Four uniaxial foil strain gauges (QFLG-02-11-3LJB,
Tokyo Sokki Kenkyujo Co., Ltd., Japan) were placed
inside the instrumented trial implant. Wires from the
strain gauges were run outside the operative field and
connected to a 24-bit analog input module (NI9237,
National Instruments, Co., Ltd.). The instrumented trials
were packaged and sterilized as is required for standard
clinical use. The strain gauges and coating materials
were single use and disposable.

After reduction of the RTSA, forces were measured in
0 degrees abduction/flexion/external rotation (ER), de-
fined as “neutral.” Next, force measurements were taken
during 5 repetitions of full ER from the neutral position.
GHCF measurements were then subsequently measured
during 5 repetitions of full flexion, full scaption, and full
abduction (Fig. 2).

Postoperative calibration and data processing

Washing and sterilization of the sensor may affect the
measurement performance, so post-use calibrations were
performed after each clinical use. The external force vec-
tor (Fx, Fy, Fz) can be expressed in terms of the strain
gauge outputs as follows:

F,
F,| =T (1)
F, 53

where T is a calibration matrix, and Si (i=1 to 4) corre-
sponds to the outputs of the four strain gauges. The calibra-
tion matrices were calculated according to well-established
methods [3] for every sensor after use in surgery. The
calibration procedures conformed to ASTM E-4 standards
(ASTM, 2008).

Force values at neutral position, terminal ER, terminal
flexion, terminal scaption, and terminal abduction were

A

The glenosphere is transparent to make the inside visible (b)

Fig. 1 a-b. An instrumented trial implant is shown with a measure coordinate system. The X-axis directs anterior, Y superior, and Z medial (a).
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Fig. 2 The patient’s shoulder was moved five times in ER, flexion,
scaption, and abduction

analyzed by use of one-way ANOVA to determine
whether there were any significant differences in joint
reaction force and arm position. A post hoc analysis was
also applied. Tukey-Kramer methods were used when
multiple comparisons were made.

Operative technique

All cases were done through a deltopectoral approach. If
the subscapularis was intact, it was tenotomized during
the approach. It was not repaired prior to GHCF testing.
All patients received regional and general anesthesia,
and confirmation of zero muscular twitches was con-
firmed by anesthesia prior to trialing as per our typical
trialing protocol. A humeral head cut was performed at
or just below the anatomic neck in all cases. The final
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humeral stem (Exactech, Inc., Gainesville FL) was placed
after appropriate reaming and broaching. The glenoid
baseplate was placed after glenoid preparation in
neutral-to-slightly inferior tilt. Care was taken to ensure
the inferior edge of the baseplate was at or just below
the inferior lip of the glenoid. The instrumented implant
was then placed, and testing began. Typically, females
received a 38 mm glenosphere and males received a 42
mm glenosphere, unless preoperative or intraoperative
factors led to a change in implant size. Trial trays were
chosen based on the surgeon’s subjective feeling of ap-
propriate stability.

Results

Patient/implant characteristics

Twenty-one shoulders in 21 patients completed the study.
The average patient age was 70.1years (range, 54—84).
Their average height was 169.5cm (range, 154.9-182.9
cm), and average weight was 82.7 kg (range, 45.4-129.3
kg). There were 11 females and 10 males. There were thir-
teen 42 mm glenospheres and eight 38 mm glenospheres
used during testing. Sixteen RTSAs were performed for
cuff-tear arthopathy, 1 for irreparable rotator cuff tears, 1
for proximal humeral malunion, 1 for glenohumeral arth-
ritis, and 1 for rheumatoid arthritis.

Force/motion data

One of the representative force data sets of a patient for
the identified motions is noted in Fig. 3. Force directions
were defined by the force exerted by the humeral tray
on the glenosphere. Positive values indicate that the
humeral tray pushes the glenosphere towards positive X
direction (nearly anterior on the left shoulder), towards
positive Y direction (nearly superior), and towards posi-
tive Z direction (nearly medial). Conversely, negative
values mean opposite directions. Mean force compo-
nents (Fx, Fy, Fz) [N] were (- 6, 76, 80) N in neutral pos-
ition, (6, 65, 64) N in external rotation, (- 48, 14, 139) N
in flexion, (-2, — 18, 81) N in scaption, and (53, - 24,
155) N in abduction, respectively. The resultant force
values at terminal ER, terminal flexion, terminal scap-
tion, and terminal abduction were read and averaged, as
well as force values at the neutral position for every pa-
tient (Fig. 4). Mean (SD) resultant force values were 135
N (65) of neutral, 123N (63) of ER, 165N (85) of
flexion, 110N (70) of scaption, and 205N (101) of ab-
duction (Fig. 5). Mean SDs within subjects for 5 repeated
cycles of an activity were 11 N for external rotation, 14
N for flexion, 12 N for scaption, and 18 N for abduction,
respectively. The mean force values are significantly af-
fected by joint position (p =0.002). The mean force at
terminal abduction is significantly greater than the mean
forces at terminal ER and terminal scaption (p < 0.05).
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Fig. 3 Force curves are shown at the four identified movements. X, Y, Z directions correspond to the coordinate system in Fig. 2
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Discussion

The most important finding of this study was that soft-
tissue glenohumeral contact forces were at their lowest
during scaption and ER, and at their greatest during
abduction. RTSA has become a popular and effective

option for treating a variety of pathologies. Despite its
success and improving outcomes, complications from
deficient soft-tissue tensioning (instability) and excessive
tensioning (acromial fracture, neurologic injury) still
occur. Currently, surgeons have very little objective
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Fig. 5 Force values of all patients are averaged at each identified
motion. Error bars are SD of inter-subjects deviations. Mean force for
scaption and ER is significantly less than abduction (p < 0.05)

information when deciding on the appropriate soft-
tissue tensioning intraoperatively. Subjective guidelines
such as assessing conjoined tendon or deltoid tension
have been described [5]. Some surgeons use the ease of
dislocation at various joint angles as their method of
assessing stability. To our knowledge, this study is the
first to quantify forces intraoperatively, and the first to
assess GHCF during passive range of motion of the
shoulder.

In our study, joint position was significantly associated
with GHCF. Compared to the neutral position, GHCF
were decreased with scaption and ER, and increased with
abduction. GHCF during abduction were significantly
greater than scaption or ER. Surgeons often assess
tension at neutral by checking longitudinal traction
(“shuck”), and at varying degrees of ER/extension, which
also assesses the risk of posterior impingement. Based
on the data from this study, it may be more reasonable
to assess stability in varying degrees of scaption and ER.
Shuck and ease of dislocation may increase with either
ER or scaption, compared to neutral. In addition, the in-
traoperative data demonstrated that GHCF are greatest
in abduction. Surgeons should keep this in mind and
assess the soft-tissue tension in full abduction when
trialing, in addition to neutral where it is commonly
assessed.

To our knowledge, there are no comparable studies of
RTSA intraoperative contact forces. Ackland et al
looked at GHCF in a RTSA cadaver model. They found
a joint force magnitude of 84.5% body weight at 75°
abduction [1]. Studies looking at native GHCF in active
abduction demonstrate GHCF between 420 and 600 N
[2, 6, 30]. Although none of these studies are directly
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comparable to our data, they do demonstrate that intra-
operative RTSA GHCF are greatly reduced compared to
previously published data in loaded shoulders. This may
indicate that overtensioning in the operating room could
be further detrimental as GHCF will likely be greater
with increased muscle tone and active range of motion.

Instrumented implants have been previously used to
assess contact forces following arthroplasty. Multiple
studies have measured hip joint contact forces using an
implantable instrumented hip prosthesis [25], some
studies for up to a decade. Bergmann et al. looked at an
instrumented hemiarthroplasty and found that, in 75°
abduction, the force resultant is 85% of body weight [2].
Custom instrumented tibial inserts have been used for
measuring joint forces following total knee arthroplasty
[25]. These studies provide support to this method of
assessing joint contact forces. The potential clinical rele-
vance of this study could be to improve outcomes and de-
crease complications by guiding surgeons in how to assess
soft-tissue tensioning in the appropriate arm positions.

The strengths of this study are that glenohumeral con-
tact forces are measured using an intraoperative tension-
ometer. The are positions are carefully recorded, and the
arm position are correlated to contact forces. This novel
approach provides real-time contact-force data in arm
positions, and provides useful information as to the best
time to assess stability.

There are several limitations to our study. First, all
data were collected intraoperatively. In this setting, most
patients were at or near muscle paralysis. Certainly, the
GHCEF taken intraoperatively are greatly reduced com-
pared to forces postoperatively. An implantable device
that could measure forces during daily activity would
provide valuable information. In addition, we did not
repair any subscapularis tendons prior to testing. It is
likely that subscapularis repair may alter the findings of
GHCE. All implants were Exactech Equinoxe RTSA
(Exactech, Inc., Gainesville, FL). This prosthesis has a
medial center of rotation but a lateralized humerus. The
GHCEF data from this implant may not be applicable to
other implants with medial humeral designs on the mar-
ket. In our institution, females most commonly receive a
38-mm glenosphere and males typically a 42-mm gleno-
sphere. Changes in glenosphere size can alter GHCF,
but we elected to remain consistent with our typical sur-
gical technique to not alter the soft-tissue tension we
typically assess. Also, the instrumented implant assesses
the force acting on the glenosphere and the baseplate. It
is assumed that this force is predominantly from
glenosphere-polyethylene loading, but muscles and cap-
sule wrapping around the glenosphere could contribute
to the measured forces.

In addition, we did not break down forces based on
diagnosis or rotator cuff integrity. It is possible that
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some of the variation in GHCF may be due to differ-
ences based on the underlying diagnosis. Future, larger
studies may be helpful to break down the forces seen in
different diagnoses.

Lastly, the appropriate implants at the time of trialing
were made based on the surgeons’ subjective assessment
of stability. There is likely a range of GHCF that occur
in a “stable” prosthesis, which could explain some of the
variation seen in GHCF in different patients. We are
hopeful that more objective criteria of stability will be
developed in the future, and that this type of study will
be beneficial in developing them.

Conclusions
Despite these limitations, we believe our data provide
proof of principle that intraoperative joint force mea-
surements can be performed during routine RTSA
procedures. A surgeon’s only opportunity to achieve op-
timal shoulder joint tensioning is during surgery, and
objective intraoperative measures will facilitate that goal.
GHCF vary based on intraoperative joint position
following RTSA. Forces are at their lowest in scaption or
ER. Forces are at their greatest during abduction. Sur-
geons should use this knowledge when assessing stability
and soft-tissue tension intraoperatively. This information
will hopefully be useful in improving outcomes following
RTSA. Under-tensioned RTSA can lead to dislocation
and need to revision surgery, over-tensioned RTSA can
lead to the debilitating complication of acromial stress
fractures. Surgeons should use the findings of this study
to help assess soft-tissue tension in the appropriate arm
position. Further follow-up studies are on-going to see if
the outcomes are improved by utilizing the knowledge
gained by this study.
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