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Abstract

Articular cartilage does not heal spontaneously due to its limited healing capacity, and thus effective treatments for
cartilage injuries has remained challenging. Since the first report by Brittberg et al. in 1994, autologous chondrocyte
implantation (ACI) has been introduced into the clinic. Recently, as an alternative for chondrocyte-based therapy,
mesenchymal stem cell (MSC)-based therapy has received considerable research attention because of the relative
ease in handling for tissue harvest, and subsequent cell expansion and differentiation. In this review, we discuss the
latest developments regarding stem cell-based therapies for cartilage repair, with special focus on recent scaffold-free
approaches.
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Background
Dealing with articular cartilage injuries is quite common
in the fields of orthopaedic surgery and musculoskeletal
medicine. Due to its avascular and aneural surroundings,
as well as its relatively unique matrix organization,
articular cartilage does not heal in response to the cur-
rently available treatments, and subsequently, the injury
may lead to the development of osteoarthritis. Therefore,
a variety of approaches have been tested to improve
cartilage healing over the past few decades (Huang et al.
2016; Vavken and Samartzis 2010; Krych et al. 2016).
Since the first report of autologous chondrocyte

implantation (ACI) was published in 1994 by Brittberg
et al. (Brittberg et al. 1994), chondrocyte-based therapies
have been extensively studied, some of which have been
successfully introduced into the clinic (Niemeyer et al.
2014; Goyal et al. 2013; Steinwachs and Kreuz 2007). On
the other hand, these procedures have some limitations
including the sacrifice of undamaged cartilage within the
same joint, as well as potential cellular alterations associ-
ated with the in vitro expansion of the chondrocytes.
Furthermore, due to the degenerative changes in

cartilage that can accompany aging, the availability of
cells may be limited in elderly individuals, both quantita-
tively and qualitatively (Hickery et al. 2003).
To overcome such potential problems, stem cell-based

therapies have been the focus of attention to facilitate
regenerative tissue repair. Mesenchymal stem cells
(MSCs) have the capability to differentiate into a variety
of connective tissue cells including bone, cartilage, ten-
don, muscle, and adipose tissue (Pittenger et al. 1999).
These cells can be isolated from various tissues such as
bone marrow, skeletal muscle, synovial membrane,
adipose tissue, and umbilical cord blood (Pittenger et al.
1999; Jankowski et al. 2002; De Bari et al. 2001; Sakaguchi
et al. 2005; Wickham et al. 2003; Lee et al. 2004), as well
as synovial fluid (Ando et al. 2014). MSCs isolated from
synovium may be well suited for cell-based therapies for
cartilage because of the relative ease of harvest and their
strong capability for chondrogenic differentiation (De Bari
et al. 2001). Among mesenchymal tissue-derived cells,
synovium-derived cells are reported to exhibit the greatest
chondrogenic potential (Sakaguchi et al. 2005). As other
options for a cell source, allogeneic synovial or bone mar-
row MSCs (Shimomura et al. 2010; Dashtdar et al. 2011)
or induced pluripotent stem (iPS) cells (Takahashi and
Yamanaka 2006; Tsumaki et al. 2015) have been assessed.
However, not much conclusive evidence using these cells
has yet been forth coming in terms of preclinical and
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clinical safety, and thus further studies with such cells are
likely still required.
With the advancement of cell-based technologies,

many of the recent tissue engineering approaches have
taken advantage of scaffolds made of either synthetic
(Vunjak-Novakovic et al. 1999; Andriano et al. 1999;
Guo et al. 1989; Masuda et al. 2003) or natural polymers
(Lee et al. 2001; Homminga et al. 1993; Brun et al. 1999;
Lahiji et al. 2000; Shimomura et al. 2014) as the support-
ing biomaterials, providing an appropriate three-
dimensional (3D) environment for cells to optimize their
proliferation and chondrogenic differentiation (De Bari
et al. 2004), and effectively delivering cells into cartilage
defects (Bright and Hambly 2014; Gobbi et al. 2009).
This technique is robust and easy for surgeons to
handle, and was reported to significantly improve the
healing of cartilage defects. Interestingly, a recent sys-
tematic review indicated that the scaffold-based ACI
methodology using collagen scaffold (Matrix-induced
ACI; MACI) provided better clinical results than did the
use of chondrocytes alone, but the evidence is still not
strong (Goyal et al. 2013). On the other hand, there are
still several issues associated with the long-term safety
and efficacy of these materials. Synthetic polymers may
have potential problems regarding retention and degrad-
ation in situ (Daniels et al. 1994; van der Elst et al.
1999). Biological materials potentially carry the risk of
transmission of infectious agents and initiating immuno-
logical reactions (Yang et al. 2004; Martin et al. 2005).
Taken together, and in order to minimize unknown risk,
such materials may ideally be excluded throughout the
treatment procedure. However, there have been no dir-
ect comparative studies of scaffold-based and scaffold-
free approaches reported and thus, it is still unknown
which approache(s) would provide better long-term
outcomes. In spite of this limitations, a scaffold-free cell
delivery system may be an excellent alternative due to its
simplicity in development and ease of subsequent
implantation. In this review, we discuss the latest devel-
opments regarding cell-based therapies for cartilage
repair, focusing specifically on recent scaffold-free ap-
proaches, in the first section. Subsequently, we focus the
second half of the review on our experiences regarding
development of a unique MSC-based scaffold-free
approach, taking a bench to bedside for clinical
application approach.

Review
Recent studies of scaffold-free cell-based therapies for
cartilage repair
We searched MEDLINE for reports published in English
up to November, 2017, using the terms “scaffold free”,
“scaffold less” and “cartilage repair”, with the exception

of studies using simple intra-articular cell injection.
Additionally, we collected related researches at second
hand as far as possible. We identified 48 publications, of
which 26 were related to in-vitro experiments, 21
reported in-vivo tests, and one was a clinical study as
listed in Table 1. Also, three review articles were identi-
fied (Shimomura et al. 2015; Yasui et al. 2016; DuRaine
et al. 2015).
To date, there have been several scaffold-free techniques

developed. DuRaine et al. defined such techniques to
divide two categories, self-organization and self-assembly,
according to the fabrication method (DuRaine et al. 2015).
Self-organization describes a process in which order
appears when external energy or forces are input into the
system, including bioprinting and cell-sheet engineering.
Also, cell aggregates are commonly formed in culture by
applying a rotational force to cells in suspension or other
non-adherent culture conditions, and thus that is catego-
rized as a self-organization. On the other hand, a self-
assembling process is a tissue engineering technique that
does not employ external forces to form tissues. The
process of tissue maturation follows a course similar to
that of native cartilage development, in which cellular
interactions and coalescence (e.g. high-density cell
culture) are driven by spontaneous minimization of free
energy, and then tissue-specific extracellular matrix
(ECM) is produced to form functional tissue via
maturation process.
Regarding cell selection in a scaffold-free approach,

chondrocytes have been mostly employed to generate
neocartilage (Table 1). These cells readily produce their
tissue-specific ECM, especially in 3D culture environ-
ment (Huang et al. 2016). On the other hand, the limited
cell availability and dedifferentiation potential during cell
expansion might be a concern as mentioned above, al-
though chondrocyte-based neocartilage is reported to
achieve biochemical and biomechanical values within
the range for native cartilage (Mainil-Varlet et al. 2001;
Mohanraj et al. 2014; Ebihara et al. 2012; Jubel et al.
2008). In addition, the implantation of such a
neocartilage usually needs to be fixed with fibrin glue,
suture, or a periosteal covering, since these tissues might
not exhibit adhesive properties required to integrate with
host cartilage (Brehm et al. 2006; Jubel et al. 2008; Lewis
et al. 2009; Ebihara et al. 2012). As an alternative, MSCs
and iPS cells have been recently tested (Table 1), and an
engineered tissue generated from these cells showed
feasibility for cartilage repair comparable to
chondrocyte-based tissues (Murdoch et al. 2007; Ishihara
et al. 2014; Yamashita et al. 2015).
Interestingly, some research has progressed to the

stage of preclinical studies using a large animal model
and clinical study, and we introduce such recent
scaffold-free approaches with high potential clinical
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impact. Mainil-Varlet et al. developed a cartilage-like im-
plant in chondrocyte high density culture supported by a
bioreactor, and implanted the materials onto minipig
cartilage defects by press-fit fixation (Mainil-Varlet et al.
2001). Histological analysis showed such an implant
yielded consistent cartilage repair with a matrix predom-
inantly composed of type II collagen. Lu et al. produced
a neocartilage allograft under defined serum-free condi-
tions, and transplanted such graft, which were cultured
to produce these constructs between 107 and 130 days,
onto sheep chondral defects with suturing (Lu et al.
2005). Eight-week histology showed the reparative tissue
appeared to be hyaline-like with weak Safranin O stain-
ing, and no inflammatory cells were observed around
the grafted area. Park et al. produced chondrocyte/ECM
membranes in high density culture, peeled the mem-
brane from the culture dishes, consolidated them by
centrifuge, and then generated an engineered cartilage
construct by an additional culture period (Park et al.
2006). Jubel et al. reported that chondrocytes cultured in
alginate beads for 21 days, then collected by centrifuge
after the beads were dissolved, and then additionally cul-
tured for 7 days in a cylinder mold formed cartilage-like
de novo tissue (Jubel et al. 2008). These two authors fur-
ther demonstrated the feasibility of their cartilage-like
constructs for cartilage repair in vivo, but the implanted
constructs needed to be fixed with collagen gel and peri-
osteal flap, respectively. Ebihara et al. used layered chon-
drocyte sheets prepared on a temperature-responsive
culture dish, and demonstrated these constructs facili-
tated cartilage repair in a minipig model (Ebihara et al.
2012). With this technique, cultured cells could be har-
vested noninvasively from the dishes by reducing only
temperature (Kushida et al. 2000). Moreover, since the
harvest did not need enzymatic digestion, differentiated
cell phenotypes were retained.
As another scaffold-free approach, chondrocytes were

cultured at high density by cell aggregation to fabricate
engineered cartilage constructs (Huang et al. 2016). Cells
were aggregated, adhered each other as spheroids in a few
hours, and, after an additional few weeks culture,
cartilage-specific matrices were secreted to subsequently
form solid neotissues (Anderer and Libera 2002). Such a
neotissue contributed to the regeneration of full thickness
cartilage defects in a pig study (Libera et al. 2009).
Additionally, Becher et al. treated 73 patients with
chondral lesion (ICRS grade III or IV) using these
neotissues, and showed well tolerated clinical results
without any serious adverse events (Becher et al.
2017). On the other hand, with this method, the size
of the tissue was limited due to its diffusion limit
(DuRaine et al. 2015), and thus a large number of
small aggregates may be required to cover a large
cartilage defect.

More recently, Yamashita et al. developed a scaffold-less
hyaline cartilaginous tissue (particle) from human iPS cells
(Yamashita et al. 2015). These iPS cell-derived cartilaginous
particles were feasible for use in hyaline cartilage regener-
ation based on the results of a mini-pig study, although
these constructs required fixation with fibrin glue due to
their non-adhesive properties.
In summary, many promising scaffold-free approaches

have been developed until now, and such technologies
could become a next generation vehicle for cartilage re-
pair, with regard to a high level of safety by avoiding ex-
trinsic materials (Huey et al. 2012). On the other hand,
there are still several issues that need to be solved prior to
future clinical applications such as complicated fabrication
methods, long culture periods, and the nonadhesive prop-
erties of generated tissues needed to be overcome for inte-
gration with host cartilage. Moreover, a large number of
cells may be required to cover large chondral lesions since
a scaffold-free approach lacks exogenous materials and
must promote ECM production by the cells themselves.
To address several of these issues mentioned above, we

have developed a novel scaffold-free 3D tissue engineered
construct (TEC) that is comprised of either human or por-
cine MSCs derived from synovium and an ECMs synthe-
sized by the cells (Shimomura et al. 2015). The safety and
effectiveness of this TEC methodology for cartilage repair
and regeneration will be focused on hereafter, as it moves
from bench to bedside for clinical application.

In vitro development of a scaffold-free tissue engineered
construct (TEC) derived from MSCs
Synovial membrane harvested from either porcine or hu-
man knee joints was enzymatically digested, and synovial
MSCs were isolated, and then expanded in growth media
containing virus- and prion-free fetal bovine serum. The
isolated cells showed characteristics of MSCs with regard
to morphology, growth characteristics, and multipotent
differentiation capacity (to osteogenic, chondrogenic, and
adipogenic lineages) (Ando et al. 2007; Ando et al. 2008).
When synovial MSCs were cultured to confluence in a
basic growth medium, they did not synthesize an abun-
dant collagenous matrix. However, in the presence of
>0.1 mM ascorbic acid-2 phosphate (Asc-2P), collagen
synthesis significantly increased with time in culture
(Ando et al. 2008). Subsequently, the monolayer cell-ma-
trix complex cultured in Asc-2P became a stiff sheet-like
structure. After detachment from culture dishes by mild
shear stress, the monolayer sheet immediately began to
actively contract and form a thick 3D tissue (Fig. 1a). Hist-
ology of this 3D tissue showed that the cells and the corre-
sponding ECM were three dimensionally integrated
together at high cell density without evidence for the
appearance of central necrosis (Fig. 1b).
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Immunohistochemical analysis showed that such TEC were
rich in collagen I and III, but with no detectable expression
of collagen II (Fig. 1c). Interestingly, adhesive molecules
such as fibronectin and vitronectin were diffusely observed
throughout the matrix of such TEC (Fig. 1c). These charac-
teristics likely contribute to the expression of the highly ad-
hesive properties of the TEC. As the TEC develops when
the matrix becomes folded and contracted, it was thus ap-
parent that the layers were integrated into each other, lead-
ing to development of a spherical body several millimeters
thick. The contraction feature of the TEC is likely due to
the presence of alpha-smooth muscle actin positive cells
(Ando et al. 2008). The TEC generated were of a sufficient
size to cover a large cartilage defect. This contracted tissue
was termed a tissue engineered construct (TEC) derived
from MSCs.

Chondrogenic differentiation capacity of the TEC
TEC derived from human MSCs and then cultured in a
chondrogenic medium containing BMP-2 showed

increased glycosaminoglycan (GAG) synthesis and de-
position as evidenced by intense Alcian Blue staining
(Fig. 2a). The quantification of GAGs indicated that
GAG synthesis was significantly higher in the TEC ex-
posed to the chondrogenic medium compared to those
generated in the absence of such components (Fig. 2b).
Similarly, semiquantitative RT-PCR analyses showed ele-
vations in expression of cartilage-specific markers in-
cluding collagen II (Col2a1), aggrecan, and sox9
messenger RNA (mRNA) following exposure of the TEC
to the chondrogenic differentiation medium (Fig. 2c). In
contrast, TEC not exposed to this medium showed only
weak expression of these cartilage-specific markers.

Selection of a preclinical large animal model
One of the crucial factors that may affect the results of
cell-based therapies is the age of the donors and the recip-
ients. Regarding the cell proliferation and differentiation
capacities of MSCs, it is controversial as to whether they
are age-dependent (Murphy et al. 2002; Quarto et al.
1995; Bergman et al. 1996; Kretlow et al. 2008) or not (De
Bari et al. 2001; Oreffo et al. 1998; Leskela et al. 2003; De
Bari et al. 2001; Scharstuhl et al. 2007). In terms of the
host tissue reaction, natural healing responses of osteo-
chondral defects has been compared between immature
and mature animals using rabbit models, and in this spe-
cies, the studies demonstrated better healing responses in
immature animals (Rudert 2002; Bos et al. 2006; Yama-
moto et al. 2004; Wei et al. 1997). On the other hand,
there have been no studies reported which directly com-
pared the results of cell-based repair of chondral defects
between immature and mature animal models.
Regarding the use of a clinically relevant animal model

for cartilage repair, it is difficult to create a chondral injury
which does not breach the subchondral bone in small ani-
mals such as rabbits, rats, and mice due to the limited
thickness of their articular cartilage, and therefore, these
conditions may not be as clinically relevant as would be
obtained with the use of a larger animal. Thus, in consid-
eration of clinical relevance, it is preferable to utilize a
large animal model to investigate the influence of maturity
on the results of cell-based therapies to repair chondral le-
sions. Therefore, in order to assess the efficacy of the TEC
in an in vivo model, a porcine model was chosen as the
physiology of the pig is similar to that of humans in many
respects (Vodicka et al. 2005), and porcine articular
cartilage of the knee is sufficiently thick as to allow cre-
ation of a chondral defect without damaging the subchon-
dral bone.

Cartilage repair using TECs in a preclinical large animal
study
Prior to performing a large animal study, we compared
the in vitro characteristics of cell proliferation and

Vitronectin

Col III

Negative 
Control

Fibronectin

Col I Col II

a b

c

Fig. 1 Development of the tissue-engineered construct (TEC). a
Macroscopic view of the TEC that was integrated to one spherical
body. b Hematoxylin and eosin staining of TEC. c Immunohisto-
chemical analysis of the TEC stained with type I collagen (Col I), type
II collagen (Col II), type III collagen (Col III), fibronectin, vitronectin,
and negative IgG (control). Red are nuclei and green is target anti-
body. Adhesion molecules such as fibronectin and vitronectin are
diffusely distributed within the TEC. Bar = 100 μm. Quoted and modi-
fied from Ando et al., Biomaterials 2007 and Shimomura et al.
Cartilage 2015
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chondrogenic capacity of porcine MSCs isolated from
skeletally immature animals (3–4 month old) with those
from mature animals (12 month old). We demonstrated
that there were no significant differences in either the
proliferation or chondrogenic capacity of porcine syn-
ovial MSCs derived from immature or mature animals
(Shimomura et al. 2010).
To test the feasibility of using the porcine TEC ap-

proach for a wide range of recipient ages without chon-
drogenic manipulation to repair a chondral injury,
immature (TEC implantation for eight knees and un-
treated control for four knees) as well as mature (TEC
implantation for six knees and untreated control for six
knees) porcine chondral injury models were utilized in
experimental studies. After implantation, the TEC firmly
adhered to the injured joint surface without suturing or
any glues. At 6 months post-implantation, and regardless
of starting age, untreated lesions exhibited no evidence
for repair or only partial tissue coverage, while the de-
fects treated with a TEC were totally or primarily cov-
ered with repair tissue (Fig. 3a, b). Histologically, the
chondral lesions in the non-treatment control groups
showed evidence of osteoarthritic changes, with loss of
cartilage and destruction of subchondral bone in both
skeletally immature and mature animals (Fig. 4a). In
contrast, when treated with a TEC, the defects were
filled with repair tissue exhibiting good integration to
the adjacent cartilage and restoration of a smooth sur-
face, regardless of age at the time of implantation (Fig.
4a). The repair tissue exhibited predominantly spindle-
shaped fibroblast-like cells in the superficial zone of the
repair tissue, while the majority of the remaining repair
matrix contained round-shaped cells in lacuna (Fig. 4a).
Following implantation, no histological findings were ob-
tained that suggested either central necrosis of the im-
planted TEC, or that an abnormal inflammatory
macrophage and lymphocyte response consistent with
some form of immunological rejection had occurred in
this allogenic situation, regardless of the age of the pigs.
Histological scoring showed that the TEC groups exhib-
ited significantly higher scores than did the untreated
control group, regardless of skeletal maturity (Fig. 4b).

Control Chondrogenic

0

10

20

30

G
A

G
 (

u
g

)

Monolayer

TEC

Control Chondrogenic

40
*

GAPDH

Sox9

Col2a1

Aggrecan

ChondrogenicControl 

c

b

a Fig. 2 Chondrogenic differentiation capacity of TECs. a Alcian blue
staining of a TEC in control medium or in chondrogenic
differentiation medium. Bar = 300 um (upper). Bar = 50 um (lower).
Arrow showing the cell nuclei are in lacuna. b The quantification of
GAG content of synovial MSC monolayer culture or TEC in the
control medium or in the chondrogenic medium. GAG synthesis is
significantly higher in the TEC exposed to the chondrogenic
medium (N = 8). *; p < 0.05. c Semiquantitative reverse transcription–
polymerase chain reaction (RT-PCR) analysis of synovial MSC
monolayer culture or TEC for chondrogenic marker genes, type II
collagen (Col2a1), aggrecan, SOX9, and GAPDH. Quoted and
modified from Ando et al., Tissue Eng Part A 2008
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Comparing the repair tissues developing following TEC
implantation in immature and mature animals, no
significant detectable differences were detected at the
histological level (Fig. 4b).
To assess the viscoelasticity of the repair cartilage

(Huang et al. 2003), we performed in vitro compression
testing at both fast and slow speeds. In the tissue local-
ized to the defects of the untreated control group, the
tangent modulus (defined as the slope of the curve at
5% strain) was significantly lower than that for normal
cartilage at a compression rate of either 4 μm/s (Fig. 5a)
or 100 μm/s (Fig. 5b), regardless of skeletal maturity of
the pigs. In contrast, there were no significant differ-
ences detected between the tangent modulus for the re-
pair tissue resulting from implantation of a TEC and
that for normal cartilage at either 4 μm/s (Fig. 5a) or
100 μm/s (Fig. 5b) in either the immature or mature ani-
mals. These results suggest that the viscoelastic proper-
ties of the repair tissue in defects receiving TEC
implants are likely very similar to those of normal cartil-
age, regardless of host skeletal maturity at the time of
implantation.
Based on the encouraging results of the preclinical

studies discussed above, we have now proceeded to clin-
ical studies under the auspices of an approved first in
man protocol by the institutional review board of Osaka
University Graduate School of Medicine (Nakamura et
al. 2014). This pilot clinical study is currently in pro-
gress, and the data are now under analysis (Shimomura
et al. 2015).

Implications of the findings from the preclinical studies
on TEC-use for cartilage repair in vivo
Based on the findings to date, the exogenous scaffold-
free TEC approach offers a number of advantages for
hyaline cartilage repair. Firstly, since the TEC develops
without any exogenous scaffold, implantation of the
TEC would likely have minimal risk of potential side ef-
fects induced by artificial or extrinsically added bio-
logical materials contained in a scaffold. On the other
hand, the MSCs were exposed to certified virus- and
prion-free fetal bovine serum (FBS) during cell culture
in the present studies. Thus, there are some concerns re-
garding this exposure of the TECs to FBS-origin proteins
during the development process. Although the TEC were
washed extensively in vitro with sterile phosphate buff-
ered saline, it cannot be concluded that no FBS proteins
were retained in the constructs. To address this issue,
we have confirmed that human serum is no less effective
than bovine serum in promoting proliferation of
synovium-derived MSCs and their chondrogenic capaci-
ties (Tateishi et al. 2008). Accordingly, with the use of
autologous human serum, it is technically possible to de-
velop the TEC in a totally xeno-free system for cartilage
repair, a set of circumstances which would minimize the
risk of infectious agents, as well as potential immune re-
activity developing after implantation of the TEC
(Martin et al. 2005).
Secondly, a further structural advantage of the TEC is

that the MSCs and the ECM synthesized by the cells are
integrated together into a 3D structure with a uniform
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cellular distribution. Thus, there is no need to modify or
adjust the cellular distribution within the TEC. It is also
notable that these TEC possess sufficiently self-
supporting mechanical properties in spite of the fact that
they do not contain an exogenous artificial scaffold. The
tensile strength of the TEC, which develops in the pres-
ence of Asc-2P for 14 or 21 days, is comparable with
that of healing ligament tissue at 1–2 weeks after injury
(Provenzano et al. 2002). Therefore, such TEC can be
readily handled without causing overt damage to the
matrix-cell complex during implantation procedures.
Thirdly, an important biological characteristic of the

TEC described is its tissue adhesiveness. This property
contributes to the rapid and secure adhesion of the TEC
to a natural cartilage matrix and thus, simple implantation
procedures for the placement of the TEC into chondral le-
sions or defects could be expected to proceed without
augmentation of the initial fixation. Moreover, such adhe-
siveness also enables rapid self-association internally with
its own matrix, a factor which likely contributes to the tis-
sue plasticity of the TEC. In reality, it is thus possible to
develop a spherical-shaped tissue several millimeter thick
by allowing the released monolayers from several dishes
to fold in series. With such “plasticity”, it is possible to de-
velop a TEC that matches the needed size and shape to re-
pair a chondral defect more than several millimeters in
depth. Although we have not yet identified the crucial fac-
tor(s) which determine the tissue adhesiveness of the
TEC, immunohistochemical analysis has shown that fibro-
nectin and vitronectin are localized at the interface be-
tween the TEC and the base of the chondral lesions.
Therefore, fibronectin and vitronectin may likely be, at
least partially, involved in the adhesive properties of these
in vitro generated TEC.
Fourthly, it is notable that implantation of TEC with-

out any pretreatment to promote a specific differenti-
ation pathway resulted in tissue repair associated with
an active chondrogenic differentiation response. Thus,
the implantation of a basic TEC lead to the in vivo dif-
ferentiation of such TEC in response to the in vivo bio-
logical and biomechanical cues following differentiation.
Therefore, in vitro differentiation may not offer add-
itional value to the success of the repair. On the other
hand, it is still controversial whether implanted MSCs
directly contribute to cartilage repair and are retained
within the hyaline-like tissue that develops post-
implantation, or they interact with the surrounding en-
vironment through the release of anti-inflammatory and
trophic mediators and facilitate involvement of endogen-
ous cells (Caplan and Hariri 2015). Therefore, further
studies are required to determine whether the implanted
TEC contributed to cartilage repair directly by local dif-
ferentiation to chondrocytes or indirectly via release of
mediators which enhance repair by activation of

endogenous chondrocytes or activation and differenti-
ation of other cells in the intra-articular environment.
However, based on the outcomes from the porcine

preclinical studies, the in vivo repair was not perfect, in
that the repair tissue still contained some fibrous tissue,
mainly at the surface or in the superficial zone. In the
detailed biomechanical studies discussed above, the
TEC-mediated repair cartilage still exhibited some com-
promised mechanical properties at the upper level of the
superficial zone (lamina splendens), a deficiency that will
likely need improvement in the future for maintenance
of long term repair cartilage integrity (Ando et al. 2012).
However, as the lamina splendens apparently develops
during the post-natal period in some species (Takada et
al. 1999; Fujioka et al. 2013; Gannon et al. 2015), further
understanding of this process could provide a solution
to the observed structural deficiency following in vivo
TEC implantation.

Future perspectives for the scaffold-free MSC-based TEC
approach to repair cartilage
Building on the results of the preclinical studies, the
present review has provided the current evidence for the
safety and feasibility of using a unique scaffold-free TEC
generated from synovial MSCs for effective cell-based
cartilage repair in a clinical setting. Additionally, this
technique is simple and should be easy for surgeons to
handle for implantation into cartilage defects. Thus,
such a new MSC-based technique could be considered
as the next generation vehicle for cartilage repair.
Cartilage injuries might become curable with currently

available cell-based therapies. On the other hand, the
bigger clinical problem is related to the higher incidence
of osteoarthritis (OA), an incidence that is much higher
than that for isolated chondral injuries (Hjelle et al.
2002; Aroen et al. 2004; Dawson et al. 2004; Peat et al.
2001). Therefore, development of novel therapeutic
methods for osteochondral repair are also urgently
needed, considering the large population of patients with
early and advanced osteoarthritis. As such lesions very
often involve subchondral bone damage, it is important
to also consider subchondral bone regeneration in
addition to cartilage. Recently, we have combined the
scaffold-free MSC-based TECs with an artificial bone
block to fabricate a biphasic osteochondral implant,
and demonstrated the feasibility of using such con-
structs for osteochondral repair in a rabbit study
(Shimomura et al. 2014; Shimomura et al. 2017).
Therefore, the combined TEC-artificial bone construct
as another viable option for TEC application, could
also be considered a promising MSC-based bio-im-
plant to repair osteochondral lesions in the near
future.
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Conclusion
In this review, we have focused on recent advancements
in scaffold-free approaches for cartilage repair. Many
promising techniques have been developed and some of
them have demonstrated their feasibility to repair cartil-
age lesions in preclinical and clinical studies. Therefore,
the clinical application of such new technologies could
be expected in near future. On the other hand, the
optimization of and selection of cell sources and their
fabrication methods have not been fully investigated,
without any direct comparative studies. Thus, the ideal
scaffold-free approaches that lead to repair of cartilage
lesions have not been elucidated in detail. Further stud-
ies are needed and should be conducted in a methodo-
logically rigorous fashion.
Notably, we have elucidated many of the characteris-

tics of a scaffold-free 3D synthetic tissue (TEC) derived
from cultured synovium-derived MSCs as a unique and
promising clinically relevant implant for cartilage repair.
This was demonstrated in vivo using a preclinical model
and a range of ages (Shimomura et al. 2010; Ando et al.
2007; Ando et al. 2008). Due to the scaffold-free nature
of their in vitro generated structure, implantation of
TEC could potentially yield more long-term safety and
efficacy than other options derived from scaffold-based
cell therapies. Being a collagen I rich matrix, the basic
TEC construct could also be potentially suitable for aug-
menting repair of compromised skin, or enhancing the
repair of ligaments or tendons, which are also collagen I
rich. Since TEC also have osteogenic and adipogenic dif-
ferentiation capacity (data not shown) in addition to
chondrogenic potential, basic TEC could likely also be
used for other applications. Moreover, TEC could also
be developed from MSCs derived from other tissues,
such as adipose tissue which is an abundant source of
MSC and readily obtained without entering the damaged
joint. Therefore, tissue engineering using the TEC tech-
nology discussed could potentially provide a variety of
therapeutic interventions for regenerative medicine in a
number of tissue applications using MSC from different
sources. However, as MSC populations from a given
source are very heterogeneous, and such heterogeneity
can vary between tissue sources (Ando et al. 2014; Hart
2014), this potential of the TEC technology will have to
be rigorously characterized. Whether clonally-derived
MSC versus specific MSC populations will be more effi-
cacious for particular applications, remains to be
determined.
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