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New trends in articular cartilage repair
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Abstract

Damage to the articular cartilage is an important, prevalent, and unsolved clinical issue for the orthopaedic
surgeon. This review summarizes innovative basic research approaches that may improve the current
understanding of cartilage repair processes and lead to novel therapeutic options. In this regard, new aspects of
cartilage tissue engineering with a focus on the choice of the best-suited cell source are presented. The importance
of non-destructive cartilage imaging is highlighted with the recent availability of adapted experimental tools such
as Second Harmonic Generation (SHG) imaging. Novel insights into cartilage pathophysiology based on the involvement
of the infrapatellar fat pad in osteoarthritis are also described. Also, recombinant adeno-associated viral vectors
are discussed as clinically adapted, efficient tools for potential gene-based medicines in a variety of articular
cartilage disorders. Taken as a whole, such advances in basic research in diverse fields of articular cartilage repair
may lead to the development of improved therapies in the clinics for an improved, effective treatment of cartilage lesions
in a close future.
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Introduction
Articular cartilage damage is an important, prevalent,
and unsolved clinical issue following joint trauma or
during osteoarthritis (OA). In the absence of vascularity,
the cartilage does not have access to progenitor cells that
may support and participate in regenerative processes.
Clinical interventions such as marrow stimulation tech-
niques that support cell invasion from the bone marrow
do not restore the original cartilage structure and func-
tion in the lesions. Instead, these options lead to the for-
mation of a poorly organized, mechanically inadapted
fibrocartilage made of type-I collagen instead of type-II
collagen with proteoglycans that are normally found in
the hyaline cartilage (Johnstone et al. 2013). Further-
more, such fibrocartilaginous repair tissue may not inte-
grate well with the surrounding, unaffected cartilage
(Khan et al. 2008), and may induce the development of
osteoarthritis over time (Schinhan et al. 2012).
New, effective treatments are thus needed to enhance the

intrinsic repair capacities of injured articular cartilage that
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might be envisaged based on a better understanding of the
pathological events underlying cartilage degradation. In this
regard, original findings from active basic and applied experi-
mental research have emerged that may allow to elaborate
novel concepts for therapy. They include the identification of
new components and tissues involved in the pathological
processes of cartilage damage and the development of cell-,
gene-, and tissue engineered-based approaches that may
positively influence the protective and reparative activities of
this highly specialized tissue in sites of injury.
Review
Bioengineering and cartilage
Cartilage tissue engineering is the creation of functional
substitutes of native cartilage by attaching cells with a
chondrogenic potential to polymer scaffolds. Once gener-
ated and tested in vitro, such constructs might be directly
implanted in sites of cartilage injury in the patient, espe-
cially in the case of well circumscribed (focal) lesions. The
three-dimensional (3D) environment of a scaffold is crucial
in cartilage engineering strategies for cell entrapment, pro-
liferation, and chondrogenic differentiation. A scaffold must
display the several, following features: they must be bio-
compatible, must allow for cell adhesion and proliferation,
and preferably be biodegradable. Various biodegradable
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scaffolds based on natural or synthetic polymers have been
developed for cartilage tissue engineering (Madry et al.
2002; Sohier et al. 2007; Henrionnet et al. 2010; Henrionnet
et al. 2012; Huot et al. 2013; Tritz-Schiavi et al. 2010; Heili-
genstein et al. 2011b; Heiligenstein et al. 2011a; Madry et al.
2013; Madry et al. 2014; Rey-Rico et al. 2014b). The import-
ance of the scaffold microarchitecture has been demon-
strated for articular cartilage repair (Matsiko et al. 2014).
Chondrocytes may provide the best source of cells for

cartilage engineering. Due to the relatively low cellularity
of the cartilage, in vitro expansion phases are necessary
to obtain a sufficient number of cells. Yet, expansion of
chondrocytes leads to rapid cell dedifferentiation and
consequently to the loss of the chondrogenic phenotype
(Benya et al. 1978). Alternative cell sources include em-
bryonic stem cells (ESCs), inducible pluripotent stem
cells (iPSCs), and mesenchymal stem cells (MSCs) (de
Isla et al. 2010; Stoltz et al. 2010; Orth et al. 2014). ESCs
are pluripotent cells derived from the blastocyst but
their use is still limited by the risk of teratoma formation
and by ethical concerns. iPSCs are other promising cells
for clinical applications but again, a risk of tumorigen-
icity has been identified with their use (Yamashita et al.
2013). MSCs are an alternative valid source of cells for
cartilage regeneration as they can be easily gained and
expanded in vitro without losing their differentiation po-
tential. MSCs can be obtained from the adult bone mar-
row (BMSCs), adipose tissue, umbilical cord, Wharton’s
jelly, and the synovial membrane. BMSCs are currently
the most studied and best characterized progenitor cells
for cartilage engineering. Recently, a new, promising strat-
egy for cartilage regeneration has been identified by isolat-
ing MSCs from the synovial fluid, with expansion over a
short period of time, leading to the successful differenti-
ation of the cells in chondrocytes (Matsukura et al. 2014).
Notably, higher levels of synovial fluid-derived MSCs have
been reported in the knee joint of patients with degener-
ated cartilage and OA. On the basis of their morphology
and gene expression profiles, synovial fluid-derived MSCs
are more similar to synovium-derived MSCs than to
BMSCs (Sekiya et al. 2012).
Three important parameters apart from the origin of

the transplantable cells may be used to maintain the
chondrocyte phenotype and/or to promote chondrogenic
differentiation: 1) the presence of growth or soluble fac-
tors, 2) the effects of mechanical loading, and 3) the
stimulation by environmental factors such as hypoxia. The
presence of growth or soluble factors (e.g. vitamins) in the
culture medium is known to modulate the conditions of
chondrocyte culture and chondrogenic differentiation.
Members of the transforming growth factor beta (TGF-β)
superfamily are good candidates to promote chondrogene-
sis (Figure 1) (Madry et al. 2014; Henrionnet et al. 2010).
Addition of such factors, alone or in combination with
others (bone morphogenetic proteins; fibroblast growth
factors, i.e. FGFs) during the phase of chondrocyte expan-
sion allows for a better maintenance of the chondrocyte
phenotype and for an effective chondrogenic differenti-
ation of MSCs (Perrier et al. 2011). Induction of stem cell
differentiation by applying mechanical forces is another in-
novative concept in artificial tissue generation (Henrionnet
et al. 2012). Hydrostatic pressure is a key component of
the in vivo joint environment and has been shown to en-
hance the chondrogenesis of stem cells. It can act synergis-
tically with growth factors to upregulate the expression of
SOX9 (a key chondrogenic transcription factor) and the
synthesis of cartilage-specific matrix molecules (proteogly-
cans, type-II collagen) while downregulating the expres-
sion of genes associated with terminal differentiation
(type-X collagen) (Vinardell et al. 2012). In vivo, the cartil-
age and chondrocytes are exposed to low oxygen tension
(2-7% saturation), contributing to the maintenance of the
chondrocyte phenotype and to a tight control of the chon-
drogenic commitment and differentiation of various types
of MSCs. MSC isolation and expansion under hypoxic
conditions (3%) increases the ability of the cells to undergo
a more robust chondrogenesis. Studies also suggest that
hypoxia, like growth factors, may be a potential tool to
control hypertrophic MSC differentiation (Studer et al.
2012). Of note, the majority of the studies available thus
far are limited to combining one or two of these modula-
tors while the concomitant effects of factors, loading, and
hypoxia have not been documented yet although such a
setup clearly represents the “real articular joint condition”.

Non-invasive characterization of cartilaginous implants
In cartilage bioengineering, early detection according to
the organization of the collagen network is a crucial step
in the differentiation process of autologous cells seeded
in a collagen biomaterial (matrix). To achieve a purpose-
made biofunctionality, engineered cartilage needs to ex-
hibit biochemical and physical properties similar to
those of the native, hyaline cartilage. Additionally, early
analysis of the amount of type-II collagen produced ver-
sus resident-matrix type-I collagen is a crucial step for
non-destructive, preclinical implantation validation. The
goal of our work was to develop a novel, non-invasive
procedure that permits to characterize the collagen net-
work in 3D constructs by Second Harmonic Generation
(SHG) imaging (Stoltz et al. 2010).
To integrate the notion of multiscale imaging in real

“clinical” live (non-sliced samples, sterile, non-invasive)
analyses, a two-photon excitation laser was adapted to a
macroscope optical way. To combine multidimensional
fluorescence data (time and spatial), a new multimodality
imaging (SHG-TCSPC) based on the SHG method was
considered to detect especially collagen matrix and Time
Correlated Single Photon Counting (TCSPC) method to



Figure 1 Chondrogenic differentiation of human bone marrow-derived MSCs in collagen sponges after 28 days of culture in presence
of TGF-β1 versus defined chondrogenic ITS medium. TGF-β1-induced matrix synthesis inside the sponge (HES: Hematoxylin-Eosine-Saffron)
rich in proteoglycans (Alcian blue) and collagens (Sirius Red), particularly in type-II collagen.
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contrast signal (auto-fluorescence background, SHG and
immunolabelling staining) (McCourtie & Poxton 1990;
Werkmeister et al. 2009). For both SHG-TCSPC optical
systems (microscopy and macroscopy), an index F-SHG
based on decay time response measured by TCSPC for re-
spectively fluorescence (F) and SHG values was intro-
duced. This index was previously defined in relation with
the behavior of cells (F for proliferation; SHG for collagen
synthesis) (Dumas et al. 2010).
The technique was validated using human BMSCs

(hBMSCs) as a population of cells capable of chondro-
genic differentiation when subjected to appropriate cul-
ture conditions (Kuroda & Dezawa 2014). hBMSCs were
seeded in a scaffold (collagen sponge) that offers a high
level of complexity, recapitulating the 3D organization
of chondral tissue, and maintained in culture using the
highly chondrogenic TGF-β1 growth factor. hBMSC-
seeded 3D collagen sponges were processed to evaluate
the effects of TGF-β1 upon type-II collagen expression
in the extracellular matrix by macroscopic analysis of
entire sponges (7-mm diameter) versus microscopic
(histological) evaluation (5-μm thick sections). Similar
increases in type-II collagen expression produced by the
cells seeded in the constructs were noted after 28 days
of culture with TGF-β1 using either microscopic or
macroscopic tests. The levels achieved were always
higher than in the absence of growth factor, regardless
of the technique applied (Hematoxylin-Eosine-Saffron
and Sirius red staining, immunolabelling, multiphoton
imaging, TCSPC-SHG, F-SHG index).
Collagen network SHG imaging simplifies the inter-

action study between cells and collagen or molecules
linked to collagen. Indeed, microscopy multiphoton al-
lows to observe a first fluorescent marker via 2 photon-
excitation-fluorescence and to visualize collagen without
marking with SHG (Werkmeister et al. 2008). From a
general point of view, such findings demonstrate the
relevance of SHG microscopy to control the quality of a
biomaterial in real time, without sacrifice, and especially
to follow this individual evolution according to the pa-
tient’s cell capacity to differentiate into chondrocytes.
Moreover, the possibility of detecting collagen as a har-
monophore via TCSPC-SHG, without the need for an
exogenous probe, may be advantageous to measure
ex vivo cartilage degeneration (density and homogeneity
of the collagen matrix). This technique may be used for
the convenient and rapid screening of a large number of
biomaterials simultaneously, noninvasively, and nonde-
structively, as a means to optimize the implant before
grafting in a cartilage lesion (Figure 2). The next step
will be to be able to discriminate between type-I and
type-II collagens as previously described (Su et al. 2010).
Second Harmonic Generation is thus a sensitive tech-

nique for a “live” characterization of fibrillar collagens
versus more conventional techniques. As it can be ap-
plied to many types of samples, SHG is robust, without
additional manipulation among the studies using fluor-
escent markers. Despite its cost, it is so far the only pro-
cedure capable of defining the 3D organization of
collagen in engineered tissues.

Recombinant adeno-associated viral vectors as efficient
tools for musculoskeletal gene therapy
Application of chondroreparative and chondroregenera-
tive factors to sites of cartilage damage is an attractive ap-
proach to improve the quality of the healing response of
cartilage to injury. Yet, a direct administration of recom-
binant molecules is impeded by their relatively short
pharmacological half-lives (some minutes) due to the
rapid clearance from the host. Approaches based on the
transfer of genetic coding sequences have the advantage of
allowing for the sustained production of a candidate agent
in a desired location like in a cartilage lesion (Cucchiarini
& Madry 2005).
Recombinant adeno-associated virus (rAAV) vectors

are currently the best suited, clinically relevant gene



Figure 2 Direct observation of three different scaffolds by TCSPC-SHG macroscopy for the detection of collagen as a harmonophore.
(A) Sponge without cells; (B) MSCs cultured for 28 days in sponges in the presence of ITS; (C) MSCs cultured for 28 days in sponges in the
presence of TGF-β1.
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delivery systems for human gene therapy and regenera-
tive medicine as they are based on the non-pathogenic,
replication defective adeno-associated virus (AAV) and
have been reported for both their elevated gene transfer
efficiencies and higher safety compared with other more
classical classes of vectors (nonviral vectors, adenoviral,
retro-/lenviral, or herpes simplex virus-derived vectors)
(Frisch et al. 2014a; Cucchiarini et al. 2014; Madry &
Cucchiarini 2013; Cucchiarini & Madry 2013; Madry
et al. 2011; Cucchiarini & Madry 2005; Cucchiarini et al.
2003). This is mostly due to the fact that all AAV coding
sequences can be removed from the recombinant vector
genome and replaced by a transgene cassette, and that
rAAV are mainly kept as highly stable episomal structures
that can be expressed over extended periods of time with-
out the need for integration in undesired (oncogenic) sites
in the host genome (Figure 3).
Early work demonstrated the ability of rAAV vectors

coding for reporter genes (E. coli beta-galactosidase
gene; Discosoma sp. red fluorescent protein) to successfully
modify normal and OA human adult articular chondro-
cytes in primary culture in vitro, in cartilage explant tissue
in situ, and in sites of articular damage in vivo (Arai et al.
2000; Madry et al. 2003). In these systems, the transduction
Figure 3 Generation and characteristics of recombinant adeno-associ
efficiencies exceeded 70%, resulting in reporter gene ex-
pression within cartilage explant tissue to a depth exceed-
ing 450 μm that remained present for at least 150 days.
The benefits of applying various rAAV vectors to de-

liver growth (FGF-2; insulin-like growth factor I, i.e.
IGF-I; TGF-β) and transcription (SOX9) factors in car-
tilage lesions in clinically relevant animal models of
focal defects and of OA were next documented, allow-
ing to improve the capacities of this tissue for stable re-
pair for at least 4 months in vivo without development
of a deleterious host immune response to the vectors
or the transgene products (Cucchiarini & Madry 2014;
Cucchiarini et al. 2013; Cucchiarini et al. 2005). Also of
note, all these constructs were successful to transduce
various human cells of the musculoskeletal system
in vitro and in situ, including human normal and OA
articular chondrocytes (Madry et al. 2003) and bone
marrow-derived mesenchymal stem cells (hMSCs)
(Cucchiarini et al. 2011; Stender et al. 2007). Such ap-
proaches led to the significant and durable remodelling of
OA cartilage (at least 3 months) (Venkatesan et al. 2013;
Weimer et al. 2012; Cucchiarini et al. 2009; Cucchiarini
et al. 2007) and to enhance the chondrogenic differenti-
ation of MSCs (Rey-Rico et al. 2014a; Frisch et al. 2014b;
ated virus (rAAV) gene therapy vectors.



Table 1 Effects of IFP-conditioned media on gene expression
in patient-matched chondrocytes and synoviocytes

Genes Chondrocytes Synoviocytes

iNOS 427.22 ± 123.76* 2.63 ± 0.45*

COX-2 57.39 ± 12.85* 362.75 ± 145*

mPGES-1 41.25 ± 7.51* 13.64 ± 1.82*

MMP13 18.29 ± 2.96* ND

ADAMTS-4 86.64 ± 21.13* ND

IGF-I 8.86 ± 2.04* 4.60 ± 2.64

TGF-β1 1.49 ± 0.28 1.09 ± 0.16

Type-II collagen 1.43 ± 0.19 ND

Aggrecan 1.27 ± 0.18 ND

The expression of inflammatory genes (iNOS, mPGES-1, COX-2) and of genes
coding for matrix components (type-II collagen, aggrecan) or for factors
involved in cartilage remodelling (MMP13, ADAMTS-4, IGF-I, TGF-β1) was
analyzed in patient-matched cells (n = 20) by real-time quantitative PCR
after 24 h of culture in paired conditioned medium. Data are expressed as
means ± SEM of the mean over control values. *P ≤ 0.05 between IFP
conditioned media-treated and control cells.
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Frisch et al. 2014c; Venkatesan et al. 2012; Cucchiarini
et al. 2011; Pagnotto et al. 2007) while delaying undesirable,
premature chondrocyte hypertrophy and terminal differen-
tiation (Cucchiarini et al. 2011; Venkatesan et al. 2012).
Altogether, rAAV vectors appear as particularly advanta-

geous gene vehicles capable of promoting the effective, dur-
able, and safe healing and remodelling of injured articular
cartilage. The recent example of the market authorization
of Glybera® (alipogene tiparvovec, an rAAV vector engi-
neered to express the lipoprotein lipase in the muscles of
patients with lipoprotein lipase deficiency) (Carpentier et al.
2012; Gaudet et al. 2012a; Gaudet et al. 2012b; Rip et al.
2005; Ross et al. 2004), the first commercially-approved
gene therapy product in the West by the European Medi-
cines Agency (EMA 2012) is thus a strong, motivating sign
to develop clinically grade rAAV-based products for articu-
lar cartilage regenerative medicine.

Evidence for an inflammatory and degradative role of the
infrapatellar fat pad in OA
While early research in OA focused mostly on the ar-
ticular cartilage, an innovating hypothesis has been pro-
posed that may take into account 1) the well-established
link between OA and obesity and 2) the changes in the
whole OA joint, including synovium, bone, muscle, liga-
ments, joint capsule, and cartilage (Pottie et al. 2006). It
is now well recognized that OA develops in the highly
metabolic and inflammatory environment of adiposity.
The sole role of biomechanical loading can not explain
the increased risk for OA in non-weightbearing joints
among overweight persons, and recent studies indicated
that adiposity (rather than simply excess in body mass)
is detrimental to the joint (Ding et al. 2008; Teichtahl
et al. 2009; Toda et al. 1998; Wang et al. 2009). In obese
subjects, the adipose tissue exhibits an aberrant secre-
tion pattern. The enlarged adipose tissue is infiltrated
with activated macrophages and several other types of
inflammatory cells, leading to an increased production
of proinflammatory adipokines (Lumeng et al. 2007).
As an articular adipose tissue, the infrapatellar fat pad

(IFP) is an important candidate to become the focus of
investigations that aim at further understanding the
pathophysiology of OA (Clockaerts et al. 2010). Until re-
cently, this extrasynovial but intraarticular tissue has been
neglected even though it clearly releases growth factors,
cytokines, and adipokines (Ushiyama et al. 2003). Work
from our laboratory showed that in addition to the syno-
vium, the IFP is an important source of adipokines in the
joint, especially leptin and adiponectin (Presle et al. 2006).
A crosstalk between adipocytes and other cells in the IFP
may then regulate the cellular functions both in the cartil-
age and the synovium and promote articular changes asso-
ciated with OA. Such work demonstrated a contribution
of the IFP to local inflammation in knee OA and to
cartilage degeneration through the release of cytokines
and adipokines, in relation to the better characterized sub-
cutaneous adipose tissue (scAT).
In these studies, specimens of cartilage, synovium, IFP,

and scAT were obtained from OA patients undergoing
total knee replacement surgery. Conditioned media were
generated from cultured IFP and scAT explants, and
cells (chondrocytes, synoviocytes) were isolated after se-
quential enzymatic digestion of the corresponding tis-
sues. The data showed that the IFP released elevated
amounts of leptin and adiponectin. Interestingly, the IFP
from male OA patients exhibited similar secretory activity
than the scAT, but the production of both adipokines dif-
fered between both adipose tissues for female OA patients.
The IFP was the major source of adiponectin while the
scAT released elevated levels of leptin. Besides, the condi-
tioned media from IFP strongly induced the expression of
microsomal prostaglandin E synthase-1 (mPGES-1) and
cyclooxygenase-2 (COX-2) both in chondrocytes and
synoviocytes. The mRNA level for inducible nitric oxide
(NO) synthase (iNOS) was markedly increased in chon-
drocytes but not in synoviocytes. The expression of the
genes encoding degradative enzymes (metalloproteinase
13, i.e. MMP13; ADAMS with thrombospondin motifs 4,
i.e. ADAMTS-4) and to a lesser extent that of IGF-I was
upregulated in the chondrocytes. In contrast, the condi-
tioned media from the IFP did not stimulate the expres-
sion of TGF-β, aggrecan, or type-II collagen. Conditioned
media from the IFP increased the production of PGE2 and
NO and the activity of MMP13 in chondrocytes, stimulat-
ing also the release of PGE2 in culture supernatants from
synoviocytes (Table 1). Similar effects were noted with the
scAT but at different extents compared with the patient-
matched IFP.
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The data indicated that IFP is a particularly active
organ with a major endocrine function, releasing notably
leptin and adiponectin. The IFP and scAT exhibited differ-
ent secretory patterns for adipokines in female OA pa-
tients. More importantly, the IFP may also be an important
source of inflammation for chondrocytes and synoviocytes,
thus contributing to articular changes associated with OA.
Future studies on the identification of IFP-derived inflam-
matory mediators and on the characterization of infiltrat-
ing immune cells will be critical to understand the biology
of this tissue.
Discussion
Despite the availability of various options in the clinics,
lesions to the articular cartilage remain a major unsolved
problem due to the poor healing properties inherent to
this avascular tissue. The development of new, effective
therapeutic regimens is therefore critical to stimulate the
intrinsic repair capacities of the cartilage. The use of
basic science tools including cells, genes, and biomaterials
that might be implanted in sites of cartilage lesions may
open new avenues of clinically adapted research in ortho-
paedic surgery. Challenges that remain to advance the
field of cartilage engineering include the choice of the best
suited source of cells to undergo optimal chondrocyte dif-
ferentiation without undesirable, premature chondrocyte
hypertrophy and osseous metaplasia in dedicated scaffolds
(Johnstone et al. 2013). Advances in high-resolution cartil-
age imaging greatly increased the ability to generate infor-
mation on its 3D structure in a non-destructive fashion
(Zehbe et al. 2010; Goebel et al. 2012; Goebel et al. 2014).
Especially noteworthy is the recent availability of adapted
experimental tools such as Second Harmonic Generation
(SHG) imaging to perform a “live” structural characterization
of cartilaginous constructs prior to implantation in vivo. In
the field of gene therapy, the recent example of the market
authorization of an rAAV vector-based gene medicine raises
strong hopes for a clinical translation of this potent technol-
ogy for musculoskeletal applications. Finally, the IFP has
been identified as another particularly active organ involved
in OA. It remains to be seen whether apart from its roles in
OA, the IFP and in particular its associated mediators might
be of value as targets for therapeutic interventions to en-
hance cartilage repair. Such advances in basic scientific and
translational research in diverse fields of articular cartilage re-
pair may have strong value to further develop improved clin-
ical therapies (Madry 2014).
Conclusion
In light of the new advancements in basic and applied
experimental cartilage research, establishing a con-
stant exchange of knowledge between scientists and
clinicians appears to be the most adapted method to
generate new, effective therapeutic options for an opti-
mal treatment of articular cartilage lesions in patients.
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