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Abstract 

Artificial intelligence (AI) is looked upon nowadays as the potential major catalyst for the fourth industrial revolution. 
In the last decade, AI use in Orthopaedics increased approximately tenfold. Artificial intelligence helps with track-
ing activities, evaluating diagnostic images, predicting injury risk, and several other uses. Chat Generated Pre-trained 
Transformer (ChatGPT), which is an AI-chatbot, represents an extremely controversial topic in the academic com-
munity. The aim of this review article is to simplify the concept of AI and study the extent of AI use in Orthopaedics 
and sports medicine literature. Additionally, the article will also evaluate the role of ChatGPT in scientific research 
and publications.

Level of evidence: Level V, letter to review.
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Introduction
The term artificial intelligence (AI) was first described 
by McCarthy et al. in 1955, when they called AI "the sci-
ence and engineering of making intelligent machines". 
They thought that these machines would be able to do 
tasks that people used to think only humans could do, 
like abstract thinking and advanced problem solving 
[36]. Artificial intelligence also refers to the scientific and 
technological endeavor of developing intelligent com-
puters that can perform functions normally associated 
with human effort [21]. There is a subset of AI known 
as machine learning (ML), which uses computational 
techniques to examine massive data sets in order to cat-
egorize, forecast, or obtain valuable information without 

explicit instructions [21]. The terms AI and ML are fre-
quently used interchangeably [34].

Artificial intelligence is looked upon nowadays as the 
potential major catalyst for the fourth industrial revolu-
tion after steam engines in the 1760s, electricity and the 
petroleum revolution in the 1870s, and computers in the 
1970s [35, 49]. Artificial intelligence has the potential 
to play such a role and provide new avenues as well as 
explore new frontiers in health care research and prac-
tice. In a recent study, single electronic medical record 
(EMR) research identified over 30.000 unique data items 
per patient [47]. “Inadequate time, insufficient context, 
and insufficient presence" make it difficult for physicians 
and researchers to synthesize data and make therapeutic 
decisions in an era of information overload. AI’s predic-
tive powers might help with economic sustainability and 
data surfeit [47]. The aim of this review is to simplify 
the concept of AI as well as evaluate its application in 
Orthopaedics in general and sports medicine in particu-
lar. Additionally, the article will discuss the rising and 
controversial role of Chat Generated Pre-trained Trans-
former (ChatGPT) in academia.
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How does it work?
Artificial intelligence uses sophisticated statistical tech-
niques to analyze and interpret complicated relation-
ships between variables. These algorithms can "learn" 
from data with minimal human programming. It uses 
a huge dataset that is divided into predictors such as 
graft diameter or associated injuries and outcomes, for 
example, graft failure, non-union, or revision proce-
dures. The computer model analyzes each set of "predic-
tor" characteristics to predict a certain result. The study 
may discover key elements, measure and rank them, and 
design an algorithm to predict the result. These ortho-
paedic algorithms may be utilized for future patients 
[33]. In other words, given a set of patient specific-data, 
for example, radiologic imaging, lab results, or any other 
data from electronic medical records, a diagnosis could 
be made, a risk score could be evaluated, or some treat-
ment options could be evaluated [11].

Several modalities are used to accomplish the process 
of getting a meaningful output from input data. In gen-
eral, algorithms could be categorized as supervised (the 
algorithm is trained by comparing its outcome to cor-
rectly labeled outputs) or unsupervised (the algorithm 
autonomously searches for patterns without trial-and-
error training). The following table summarizes these 
methods (Table 1).

Chat Generative Pre‑trained Transformer (ChatGPT)
It is the newest member of the AI family and has found 
its way very rapidly into healthcare services and research. 
ChatGPT uses a hybrid type of language formatting 
that includes supervised learning as well as non-super-
vised or reinforcement learning with human feedback 
(RLHF). It simply generates an output report depending 
on the inputs provided. It has the potential advantage of 

providing an overview of the existing literature about a 
certain topic, detecting some existing knowledge gaps, 
and providing novel ideas or hypotheses for research 
[13]. Searching PubMed on June 6th, 2023, for the term 
"ChatGPT" revealed 564 articles (560 published in 
2023). This chatbot had even been tested to pass high-
level exams such as the United States Medical License 
Exam (USMLE) and the American Board of Orthopae-
dic Surgery (ABOS) exam [31, 33]. No one doubts the 
high potential and capabilities of different AI tools such 
as ChatGPT; however, there are several concerns about 
their application in health care services and research 
(which will be discussed later in a separate section).

Current status of artificial intelligence use 
in orthopaedics
In a systematic review published in 2018, Cabitza et  al. 
showed a trend of increased use of AI in Orthopaedics 
with an almost tenfold increase since 2010 [11]. They also 
found that AI was mainly used for diagnostic purposes, 
for example, osteoarthritis prediction or detection, joints, 
bones, and spine pathology imaging. The following table 
provides insight about the use of AI in Orthopaedics 
(Table 2).

Artificial intelligence and sports medicine
Nowadays, there is widespread use of several smart 
tracking devices and phones, which are not only used 
by professional players but also amateur athletes and 
regular individuals during their daily life activities. The 
amount of data gathered by these devices and the devel-
opment of deep learning and machine learning modules 
may increase the usefulness of these tracking devices. 
We could expect individually tailored treatment plans 
of care from a special training protocol to mitigate the 

Table 1 Summary of different artificial intelligence modalities

Method Description

1. Expert systems [57] Early AI systems that replicate "expert" decisions. These systems use knowledge bases with organized, 
factual deductions and heuristics. An expert system learns from these facts and creates "rules" for future 
decision-making

2. Logistic regression [45] Predicts binary response variables using a logistic function. It provides simple and reproducible results 
to compare different complex models

3. Bayesian networks  [38] These models illustrate variable-outcome connections. They model outcome probability distributions 
as local, conditional discrete variable probability distributions. It might predict injury risk for an athlete 
based on current performance measurements and injury history

4. Random Forest algorithms [45] These algorithms build many "decision trees," flowchart-like structures that emerge from decisions 
at numerous branching decision points

5. Support vector machines [45] It creates a multidimensional representation of data as points in space, mapped to distinguish categories 
as clearly as feasible

6. Artificial and deep neural networks [18] These models are more independent and require little to no human supervision with less data reformat-
ting
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risk of certain injuries and expect to return to play after 
sustaining sports injuries [45]. Artificial intelligence is 
becoming an integral pillar in modern sports medicine 
practice. Since professional sports across the world are a 
multibillion-dollar enterprise, optimizing players health 
status by decreasing injury risk has become a very cru-
cial part of today’s sport. Karnuta et al. used an advanced 
ML algorithm to predict the next-season injury in hockey 
players with an accuracy of 94.6% (SD 0.5%) with good to 
excellent dependability [27]. Likewise, AI has been widely 
studied for image interpretation in radiology as well as 
other orthopaedic disciplines, and it is now slowly mak-
ing its way into sports medicine practice and research [3, 
19, 56]. Štajduhar et al. used a semi-automated technique 
to evaluate magnetic resonance imaging (MRI) images 
to detect anterior cruciate ligament (ACL) injuries. The 
area under the curve for complete rupture detection was 

0.94 (which indicates excellent diagnostic accuracy) [50]. 
Kottie et  al. were able to detect knee injuries from gait 
analysis using several parameters of ground reaction 
forces such as slope, direction, and push-off time [29]. 
Artificial intelligence was also used in sports medicine 
to predict possible changes in patient reported outcomes 
(PROs) after a procedure. Nwachukwu et al. used a spe-
cific ML algorithm to identify salient predictive vari-
ables that led to a clinically significant difference across 
three different hip scores in patients with femoro-ace-
tabular impingement (FAI) [40]. The 3D distance map-
ping (which assesses the relative position between two 
opposing articular surfaces), coverage mapping (which 
utilizes the calculated distance maps to provide insights 
about areas of abnormal coverage), and volume measure-
ments (which calculate the 3D volume amount of certain 
areas on WBCT images) of ankle syndesmosis have been 

Table 2 Different examples of artificial intelligence (AI) use across several orthopaedic sub-specialties

Scope Examples

1. Fractures detection and prediction [41] - Evaluate the accuracy of deep neural networks to diagnose neck femur fractures in comparison to per-
ceptual training of medically naïve individuals [1].
- Predict hip fractures and estimate predictor importance in Dual-energy X-ray absorptiometry (DXA)-
scanned individuals [30]
- Evaluate the ability of convolutional neural network to detect distal radius fracture on an antero-poste-
rior view of the wrist [19].
- Incorporate diverse measurements of bone density and geometry from central QCT imaging 
and of bone microstructure from high-resolution peripheral QCT imaging, can improve fracture predic-
tion [6].

2. Osteoarthritis and arthroplasty - Compare different gait patterns in patients with uni-compartment knee arthroplasty versus total knee 
arthroplasty [22].
- Early prediction of symptomatic knee osteoarthritis using MRI images [5, 43].
- Develop machine-learning based implant recognition system for hip arthroplasty designs [24].
- Measures of knee cartilage thickness can predict future loss of knee cartilage [23].
- Investigate the quantification of osteoarthritis and prediction of tibial cartilage loss by analysis 
of the tibia trabecular bone from magnetic resonance images of knees [32].
- Knee cartilage segmentation using a tri-planar convolutional network [44].
- ML tool demonstrates clinical utility with early prediction of patients who are most at risk of developing 
poor postoperative functional outcomes and PROMs after primary total knee arthroplasty [10].
- Predict length of stay, discharge disposition, and inpatient charges for primary anatomic, reverse, 
and hemishoulder arthroplasty [26].

3. Spine surgery - Classification of scoliosis curves [2].
- Detection of lumbar spine compression fractures [3].
- Using a handgrip device and target tracking test to detect impairments of hand motor function 
in patients with cervical spondylotic myelopathy [31].
- Detection of spinal metastasis using a multi-resolution approach [56].

4. Foot and Ankle surgery - Using automated segmentation to study distance and coverage mapping in Chopart joints in patients 
with progressive collapsing foot deformity (PCFD) [7, 8].
- Advanced semi-automated segmentation to evaluate hallux rigidus [15].
- Objective Computational technique to classify ankle osteoarthritis on weight bearing computation 
tomography (WBCT) [51].
- Semi-automated assessment of different hallux valgus parameters on (WBCT) of the hallux valgus [16]

5. Miscellaneous - Switching neural networks used to classify multiple osteochondromas [37].
- Develop a machine learning algorithm to predict the prolonged opioid use after total hip arthroplasty 
(THA) [25].
- Online image messaging platform for remote monitoring of surgical incision sites [58].
- Ensemble learning techniques to study skeletal maturity [12].
- Classify pathological gait patterns using 3D ground reaction force (GRFs) data [4].
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recently studied in patients with progressive collapsing 
foot deformity (PCFD) [39]. It is possible that these new 
automated and semi-automated measurements will help 
untangle the confusion about the diagnosis of syndes-
motic instability.

Advanced distance mapping algorithm 
in orthopaedics
Weight-bearing computed tomography (WBCT) has 
recently been used to assess a variety of lower extremity 
deformities and pathologies, such as knee osteoarthritis 
[46], ankle arthritis, progressive collapsing foot deform-
ity [17], and hallux valgus [14] WBCT more accurately 
measures bone positioning than traditional weight-bear-
ing radiographs and non-weight-bearing CT [48]. Previ-
ous studies have focused on using two-dimensional (2D) 
radiographs with manually calculated distances across 
a joint. However, recent studies have begun to shift to a 
more comprehensive approach, mapping the joint space 
width in three dimensions across the entire articulation 
of interest. These novel, three-dimensional methods pro-
vide superior characterization of the joint, made possible 
by automated joint mapping and ML-informed segmen-
tation techniques. Examples in the literature include 3D 
mapping of the Chopart joint in patients with PCFD 
[7], the results of which are illustrated in Figs.  1 and 2. 
Another example is the use of distance mapping to char-
acterize changes in the first metatarsophalangeal joint 

in patients with hallux valgus (bunion), as illustrated in 
Figs. 3 and 4.

Navigating concerns and potential solutions in AI 
integration in healthcare
After reviewing what AI is capable of across different 
fields, health care professionals can start tailoring this 
new technology to best serve their scope of practice. 
Although we are living in an era of exponential growth 
in AI use, this technology comes with several concerns 
that must be tackled very well to achieve the best possi-
ble outcomes. First, there are concerns about a decrease 
or break in the physician–patient relationship with the 
increased use of technology in modern medical practice. 
Actually, AI could be a very useful tool to strengthen the 
physician–patient relationship by decreasing the time 
physicians spend navigating electronic medical records. 
Artificial intelligence could present patient-specific data 
in a very organized and stratified way that even makes 
the physician very aware of all the fine details of his 
patients, which will help build a stronger rapport with 
their patients. Second, the AI "black box phenomenon" 
is a source of concern to several physicians as the devel-
opment of outcomes from different algorithms can’t be 
tracked, which could render certain outcomes unques-
tionable (especially in deep learning modules) [53]. There 
are also concerns about conflicts of decisions or poten-
tially wrong AI outcomes (especially in the early use of 
this technology), which could decrease confidence levels 
at the physician or patient level or deskill physicians and 

Fig. 1 3D distance mapping in patients with progressive collapsing foot deformity (PCFD) versus control group
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turn them into machine-dependable. However, with judi-
cious and supervised introduction and use of AI in prac-
tice, in addition to continuous appraisal and development 
of algorithms, we believe that the accuracy and precision 
of AI will get better over time.

The impact and imperative of regulating ChatGPT 
in scientific publishing
Artificial intelligence, especially in its very recent form, 
ChatGPT, plays a very controversial role in the scientific 
and academic community. It was even listed as the author 

of several peer-reviewed, indexed articles [28, 54]. Chat-
GPT was also capable of writing abstracts and manuscripts 
that were difficult to distinguish from human abstracts, 
even by experts in the field [55]. However, the AI-generated 
articles carry a high risk of bias, inaccuracy, and misleading 
data [42]. In a study by Bhattacharyya et al., they found that 
ChatGPT-generated articles had only 7% authentic refer-
ences, while the rest were either fabricated or authentic but 
inaccurate [9]. Since scholarly articles are the gatekeepers 
for the current body of scientific evidence and future direc-
tions, it becomes necessary to set rules and regulations for 

Fig. 2 3D distance mapping in patients with progressive collapsing foot deformity (PCFD) versus control group

Fig. 3 Distance mapping of the first metatarsophalangeal joint in patients with hallux valgus (HV) in comparison to a control group
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this double-edged sword. In a proactive move from the 
scientific community, authors now should sign a license 
not only to indicate that their work is original but also to 
explicitly prohibit the use of AI-generated materials such 
as texts, figures, and images [52]. The academic community 
also needs to cooperate with AI developers to validate pro-
grams to detect AI-generated articles, as is the case in pla-
giarism checking [20]. Training ChatGPT processing to be 
limited only to peer-reviewed articles or at least prioritized 
over other non-peer-reviewed articles could help increase 
the quality of its output. Moreover, AI could be used with 
caution as a research assistant to help summarize an article, 
generate potential research questions, extract relevant data 
such as authors or dates of publications, etc. Until more 
discrete regulations of AI rule in the academic world, the 
whole scientific community should judiciously use it with 
integrity, honesty, and transparency.

Conclusion
To keep up with the ever-increasing sophistication of arti-
ficial intelligence, orthopaedic surgeons must be famil-
iar with and able to implement a variety of AI-based 
approaches and modalities. Without a doubt, the field of 
orthopaedic surgery has a wealth of human and material 
resources that may be used to advance artificial intelligence 
and harness it to serve patients optimally.
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