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Abstract 

Graft selection in anterior cruciate ligament (ACL) reconstruction is critical, as it remains one of the most easily adjust-
able factors affecting graft rupture and reoperation rates. Commonly used autografts, including hamstring tendon, 
quadriceps tendon and bone-patellar-tendon-bone, are reported to be biomechanically equivalent or superior 
compared to the native ACL. Despite this, such grafts are unable to perfectly replicate the complex anatomical and 
histological characteristics of the native ACL. While there remains inconclusive evidence as to the superiority of one 
autograft in terms of graft incorporation and maturity, allografts appear to demonstrate slower incorporation and 
maturity compared to autografts. Graft fixation also affects graft properties and subsequent outcomes, with each 
technique having unique advantages and disadvantages that should be carefully considered during graft selection.

Introduction
The primary goal of ACL-R is restoring antero-posterior 
and rotatory knee stability and function as closely as 
possible to the native joint. Despite advances in surgical 
techniques and rehabilitation, postoperative complica-
tions including graft rupture remain significant, yielding 

severe socioeconomic consequences and detrimental 
patient experience.

Revision surgery rates average between 2 and 10% [32, 
39, 90, 91, 98, 128] but may be as high as 42% in high-level 
pivoting athletes [27, 29, 62, 96, 97]. Several well-known 
intrinsic and extrinsic risk factors, including patient age, 
activity level, and alignment influence postoperative out-
comes and failure rates [54, 81, 96, 128]. Graft choice has 
been highlighted as an adjustable extrinsic factor with 
impact on failure of ACL-R [54, 96, 98].

Graft choices in ACL-R are broadly divided into auto-
graft and allograft tissue. Hamstring tendon autograft 
(HT) is the most commonly used autograft among ACL 
surgeons worldwide, followed by bone-patellar-tendon-
bone (BPTB) and quadriceps tendon autograft (QT) [7]. 
When available, allograft presents an attractive alterna-
tive to autograft due to shorter surgical time and avoid-
ance of donor site morbidity. Numerous allograft sources 
are available, including all-soft tissue as well as tendon-
bone options.
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The following review aims to highlight current con-
cepts of graft choice in ACL-R and provide the most up-
to-date evidence regarding the graft selection process 
for primary ACL-R. The first of two parts, this paper will 
discuss the anatomical, biomechanical, and histological 
properties as well as differences in graft incorporation 
and fixation techniques of the three most widely used 
autografts and allografts. The second part will focus on 
clinical outcomes, failure rates and complications associ-
ated with each graft option.

Graft choice rationale
Individualized graft choice is advised in modern ACL-
R; no single graft is appropriate for all patients. When 
choosing the optimal graft for each patient, the sur-
geon must consider multiple patient-specific, physician-
specific, and graft-specific factors. Such considerations 
include tissue availability, prior or concomitant injury, 
patient comorbidities, and surgeon experience. The 
optimal graft will offer an expeditious harvest with low 
morbidity, rapid graft integration, and mechanical and 
structural properties similar to the native ACL. Despite 
this, each graft option has unique anatomical and bio-
mechanical characteristics with resultant advantages and 
disadvantages.

Anatomy and microstructural properties
Successful ACL-R necessitates reconstruction of native 
anatomy. A profound comprehension of ligamentous 
anatomy is the first step in the graft selection process.

Native ACL
ACL-R is predominantly performed as a single-bundle 
procedure. Quantitative measurements of the native ACL 
are patient-dependent with length, cross-sectional area 
(CSA), and volume ranging from 26 to 38 mm [2, 25, 36, 
42, 118], 30 to 53  mm2 [17, 25, 36, 109, 110, 119, 124] and 
854 to 1858  mm3 [66, 122, 123], respectively. Descrip-
tions of the femoral origin and tibial insertion sites 
vary in CSA and morphology The femoral CSA ranges 
between 60 and 130  mm2, whereas a larger CSA (from 
100 to 160  mm2) has been described for the tibial site [36, 
55–58, 67, 68, 85, 107, 108, 114, 117].

Histologically, the native ACL demonstrates a high per-
centage of fibroblasts, blood vessels, and elastic fibrils, 
with a relatively low ratio of collagen fibrils to interstit-
ium. These characteristics facilitate ACL function during 
daily activity, as they allow for regeneration and enable 
the ligament to withstand multiaxial stresses and fluctu-
ating tensile strains [46].

Autograft
There are several different autograft options available 
for ACL-R, the most prevalent of which include BPTB, 
QT and HS. In general, each graft should be at least 7 cm 
long and have a midsubstance CSA similar to the native 
ACL.

The BPTB autograft represented historically the “gold 
standard” in ACL-R. The graft consists of an approxi-
mately 10  mm wide tendon strip obtained from the 
central third of the patellar tendon and includes two 
bone blocks, one each from the tibial tuberosity and the 
patella. Compared to HT it is more “flat” and has less col-
lagen fibers compared to QT [45].

Unlike the BPTB autograft, multiple configurations are 
described for the QT autograft. It can be harvested with 
or without a bone block and as an approximately 10 mm 
wide full-thickness graft, or a 12 × 5  mm partial-thick-
ness graft [34]. Histologically, the QT provides approxi-
mately 20% more collagen fibrils and a higher density of 
fibroblasts than a BPTB autograft of the same size, with 
comparable thickness of collagen fibrils and density of 
blood vessels [45]. Although some have cited concerns 
regarding mismatch between patient height and QT graft 
size, the literature demonstrates that QT autograft of suf-
ficient length and thickness can be obtained in patients 
with small stature [40].

For HT autograft, harvested from the semitendinosus 
and/or gracilis tendon, there is wide variability in graft 
configurations ranging from one to eight strands, with 
quadrupled hamstring being the most common [75]. 
While BPTB and QT autograft are generally consistent 
in terms of length and thickness, hamstring tendons are 
correlated with patients’ anthropometrics and sports 
activity level and are therefore patient-dependent [89, 
121]. Graft size does not correlate with ACL footprint 
size [57]. Microscopic analysis of HT autograft demon-
strates a 20% to 40% higher number of collagen fibrils and 
fibroblasts compared to patellar tendon autografts [47].

When comparing the CSA of the BPTB (33 – 61  mm2) 
[50, 57, 85, 105], HT (52 – 64  mm2) [50, 57, 85], and QT 
(71 – 91  mm2) [50, 85, 105] autografts to the intact ACL, 
the QT appears to most closely approximate the size of 
the native footprint. These descriptive data are supported 
by a cadaveric study comparing the microscopic anatomy 
of BPTB and QT autograft, showing more favorable fem-
oral insertion width, insertion thickness, and graft bend-
ing angle for the QT autograft [64].

When comparing histological features of commonly 
used autografts, none can replace the complex ultrastruc-
tural characteristics of the native ACL [16, 46]. The native 
ACL has a lower collagen fibril to interstitium ratio, yet 
higher fibroblast, elastic fibril, and blood vessel density 
compared to all autograft options [46]. A high percentage 
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of collagen fibrils in tendon and ligament is associated 
with increased structural properties, but negatively influ-
ences elasticity and tendon constriction [46].

Allograft
Allografts can be generally subdivided into all-soft tis-
sue and bone-tendon grafts. Soft tissue allografts include 
hamstring, tibialis anterior, tibialis posterior, peroneal 
tendon, and iliotibial band/fascia lata, while subtypes of 
bone-tendon allografts are BPTB, QT with patellar bone 
block, or Achilles tendon with calcaneal bone block. 
Similar to autograft options, BPTB allograft is the only 
allograft with bone blocks on either tendon side, and 
therefore the only option providing femoral and tibial 
bone-to-bone healing. While allografts have similar ana-
tomical properties to their autograft correlates, the use of 
allograft offers the option of customizing graft size to the 
individual patient’s anatomy.

Biomechanics
When considering biomechanical studies of the native 
ACL and its respective graft options, it is important to 
recognize that numerous factors influence outcomes, 
including experimental testing variables (temperature, 
storage, freezing and thawing time, specimen orientation, 
measurement techniques, loading rate), as well as patient 
or cadaver-specific factors (age, body weight, immobiliza-
tion, or activities performed during the life of the donor) 
[126]. It is therefore inherent to biomechanical research 
that the results of individual studies vary greatly. It is also 
important to understand that biomechanical graft char-
acteristics change during the healing process and there-
fore reflect only time zero. The following will review the 
biomechanical characteristics of the ACL in relation to 
various graft options, bearing in mind these limitations 
of biomechanical research.

Ultimate load to failure
Native ACL
The primary and secondary functions of the ACL are 
to prevent anterior translation and internal rotation 
of the tibia, respectively, in relation to the femur. Stud-
ies on structural properties of the native ACL report 
an age- and sex-dependent ultimate load to failure of 
2160 ± 157 Newtons (N) in young adults [127]. These val-
ues decrease over time to 658 ± 129 N in specimens older 
than 60 years of age [18, 127].

Autograft
The ultimate load to failure of BPTB autograft ranges 
from 319 to 4389 N, with the highest load reported in 
15 mm-wide grafts [75]. In clinical practice, 10 mm-wide 

grafts with ultimate loads to failure of 1880 to 2664 N are 
typically used [26, 50, 111].

Similarly, the ultimate load to failure for a 10 to 12 mm-
wide QT autograft ranges from 249 to 2186 N [50, 75, 
111]. QT autograft with bone block, as well as full-thick-
ness grafts appear to have higher ultimate loads to fail-
ure compared to all-soft tissue or partial thickness grafts 
[111].

For HT autograft, graft configuration (including total 
number of strands) correlates with graft size, which is 
in turn positively correlated with tensile strength [14]. 
Depending on graft configuration, graft diameters rang-
ing from 6 mm to over 10 mm can be obtained with ulti-
mate loads to failure ranging from 225 to 4590 N [50, 
75, 111]. While a graft should have a minimum thick-
ness of 8  mm, increased graft CSA is associated with 
an increased complication risk due to notch and PCL 
impingement [49, 74, 76, 89].

In a recent study by Hart et al. comparing the biome-
chanical properties of the three most common auto-
grafts, no statistically significant difference was found 
in ultimate load to failure among the graft options [50]. 
Thus, in terms of ultimate load to failure, all graft options 
appear to be viable substitutes for the native ACL.

Stiffness
To restore normal knee kinematics and physiologic joint 
forces the stiffness of the used graft should be similar to 
the native ACL. Supraphysiologic graft stiffness results 
in knee over-constraint and increased chondral stress, 
thereby increasing the risk of early onset osteoarthritis 
[48, 112].

Native ACL
Values for native ACL stiffness are reported to be 
242 ± 28 N/mm in young adults. As with ultimate load to 
failure, these values decrease with age to 180 ± 25 N/mm 
in patients over 60 [127].

Autograft
For BPTB grafts, stiffness is reported to range from 158 
to 685.2 N/mm, with values between 324 and 543 N/mm 
for grafts of 10 mm width [3, 75, 111]. For QT, stiffness 
is reported to be between 17.0 and 809.0 N/mm, with 
the smallest values seen by Noyes et  al. when testing a 
quadriceps tendon-patellar retinaculum-patellar tendon 
graft construct [83]. A similarly wide range of stiffness 
(4.1 to 1148.0 N/mm) has been reported for HT auto-
grafts due to the variability in graft configurations [75].

When comparing all three graft options, Hart et al. [50] 
found a significantly higher stiffness for QT (672 ± 210 
N/mm) compared to four-stand HT (397 ± 91 N/mm), 
yet similar values when compared to BTPB (543 ± 73 
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N/mm). In contrast, Strauss et al. [111] reported higher 
cyclic loading stiffness values for HT (273 ± 49.5 N/mm) 
compared to BPTB (151 ± 25.5 N/mm) and QT (157 to 
173 N/mm, depending on configuration).

In summary, graft stiffness is an important factor 
in graft choice for ACL-R. At time zero, none of the 
grafts can perfectly mimic the native ACL and little 
evidence exists thereafter. It seems that the HT graft 
has the highest tendency towards supraphysiologic 
stiffness.

Modulus, stress and strain
Native ACL
Modulus of elasticity for the native ACL is reported to 
be between 111 and 124 MPa [18, 84]. This is generally 
lower than the reported moduli for ACL graft options; 
a recent systematic review including 26 biomechanical 
studies of commonly used grafts reported higher ranges 
for each of the three most prevalent autograft options, as 
well the majority of allografts [75].

Autograft
Modulus, maximum stress, and failure strain for BPTB 
range from 184 to 337.8  MPa, 21.6 to 101.3  MPa, and 
0.16 to 25%, respectively. For QT, the same values range 
from 153.0 to 255.3  MPa, 9.7 to 23.9  MPa, and 2.0 to 
10.7%. HT values are reported to be as high as 144.8 to 
904.0 MPa, 65.6 to 156.0 MPa, and 0.3 to 33.0%, respec-
tively [92].

Allograft
As with autografts, the structural and mechanical 
characteristics of allografts differ depending on har-
vest site. Common allograft options frequently meet 
or exceed the biomechanical properties of the native 
ACL [65]. For single-stranded grafts, the lowest and 
highest load to failure are reported for tibialis anterior 
and quadriceps tendon allografts, respectively [5, 65, 
105]. While gender does not appear to have an effect 
on allograft properties [61], older donor age has been 
negatively correlated with biomechanical characteris-
tics [13, 41, 61, 116].

Allograft processing
In addition to donor characteristics, graft preservation 
techniques alter the properties of allograft tendon. These 
changes are important to recognize when consider-
ing the use of allograft. Gamma irradiation and electron 
beam (E-beam) are employed for inactivation of bacteria 
and other pathogens. Mixed effects have been reported 
for low-dose gamma irradiation (< 20  kGy), with little 
[28, 130] or no decrease in stiffness and ultimate load to 
failure [11, 41, 78]. However, a positive dose-dependent 

effect of high irradiation is seen on mechanical tendon 
properties, altering the integrity of the tendon with a 
decrease in ultimate load to failure of up to 74% com-
pared to non-irradiated tissue [9, 33, 38, 78, 104]. Simi-
larly, E-beam irradiation produces detrimental effects 
on structural properties [43, 52], albeit to a lesser extent 
than gamma irradiation [51]. Varied biomechanical 
effects have also been reported for chemical sterilization 
including peracetic acid, BioCleanse1 (RTI Surgical, Inc), 
ethylene oxide, or supercritical CO2 treatment [5, 8, 30, 
61, 100, 101, 103].

Methods of preservation also influence tendon proper-
ties [37, 113]. Freezing a tendon at -80  °C increases the 
mean diameter of collagen fibrils, while the mean number 
of fibrils decreases. Biomechanically, this corresponds to 
a decrease in ultimate load (decrease of 82% compared to 
fresh frozen), ultimate stress (decrease of 70% compared 
to fresh frozen), and ultimate strain, yet an increase in 
stiffness [37]. Furthermore, multiple freeze–thaw cycles 
appear to affect histological and biomechanical tendon 
properties, although study results remain contradic-
tory [19, 63, 115]. Alternative preservation techniques 
like glycerolization, lyophilization, or preservation with 
chloroform–methanol extraction may also lead to a 50% 
decrease in the structural and mechanical properties of 
the allograft [43, 133].

In summary, fresh frozen allograft tissue may meet or 
exceed the biomechanical characteristics of the native 
ACL, however various sterilization and preservation 
methods alter histological and biomechanical graft prop-
erties. While low dose irradiation appears to have little 
influence on graft biomechanics, moderate- to high-dose 
irradiation and chemical processing have detrimental tis-
sue effects and should be avoided when possible.

Graft incorporation
Much of our current knowledge about graft incor-
poration derives from animal studies. It should be 
noted that animal studies carry potential bias, includ-
ing time-dependent differences in soft tissue remod-
eling compared to humans. Furthermore, postoperative 
immobilization and physiotherapy, both recognized in 
optimizing graft incorporation, cannot often be per-
formed in animals. Therefore, these studies should be 
used cautiously when treating and advising patients [65].

Graft remodeling occurs within the first six months 
postoperatively and may continue for years [1, 22, 71, 
125, 131]. During this time, the implanted tendon under-
goes a remodeling where the composition and organi-
zation of the tendon are adapted to new intraarticular 
conditions and functions [102]. When compared to BPTB 
autograft, HT autograft appears to have delayed progres-
sion (6 to 12 months vs. 12 to 24 months) of remodeling 
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[1, 31, 60, 95, 99]. Similarly, in one study superior graft 
maturity was observed for QT autograft with bone block 
versus HT autograft at six months postoperatively [73], 
although a second study reported no difference [87]. The 
results of earlier studies of graft maturation have been 
recently challenged using quantitative MRI UTE-T2* 
and T2* mapping, showing no difference in maturation 
between BPTB and HT autograft [22]. Furthermore, graft 
maturation has not been correlated with clinical outcome 
and rotatory knee stability one and two years after HT 
ACL-R [69, 71].

Graft-to-bone integration is necessary for optimal 
healing and resemblance of the physiologic ACL [88]. 
Early histological and biomechanical animal studies 
suggest that bone-to-bone healing is faster and stronger 
compared to tendon-to-bone healing (8 vs. 12  weeks) 
[6, 73, 88, 93, 120]. However, this widely accepted the-
ory has been disputed by a recent in vivo human study 
showing similar graft-tunnel motion at 6 and 12 months 
postoperatively between BPTB and HT autograft, sug-
gesting that bone-to-bone may not be necessarily faster 
than ligament-to-bone healing [59].

Animal studies also suggest that higher graft-to-bone 
contact area has positive effects on tendon–bone healing, 
especially in the early period after ACL-R [12, 23, 132]. 
Additionally, healing is sensitive to dynamic changes 
in graft forces, with early high forces on the ACL graft 
appearing to impair graft-tunnel osseointegration [72].

Graft fixation
With the advent of faster and more aggressive rehabili-
tation protocols, the primary aim of graft fixation is to 
provide stability of the graft within the bone tunnel until 
graft-to-bone incorporation is accomplished. Optimal 
graft fixation minimizes graft elongation, longitudinal 
(“bungee effect”) and transverse (“windshield wiper”) 
graft movement, as well as influx of synovial fluid into 
the bone tunnel by maximizing strength, stiffness, stabil-
ity, and durability. Despite advancements in graft fixation 
methods, the fixation point remains the weakest link in 
the graft-to-bone interface and is therefore crucial to the 
success of ACL-R.

Several direct and indirect methods of graft fixation 
have been described. Direct methods include absorb-
able and non-absorbable interference screws, cross 
pins, staples, washers, or hardware-free press-fit fixa-
tion, whereas indirect devices include fixed or adjust-
able suspensory cortical button fixation. At this point, 
there is no clear consensus regarding the “best” graft 
fixation method, as each option has advantages and 

disadvantages. Several recent meta-analyses [20, 24, 
53, 82, 106] and network meta-analyses [53, 129] have 
demonstrated no superiority in clinical or patient-
reported outcomes (PROs) of any particular fixation 
method. However, a recent meta-analysis of 40 studies 
found improved arthrometric stability and fewer graft 
ruptures but no difference in PROs using suspensory- 
compared to interference screw fixation for quadru-
pled HT autograft [15].

Advantages of suspensory fixation include the 
ease and simplicity of technique, the possibility of a 
thicker graft with higher graft-to-bone contact area 
resulting in superior graft incorporation, as well as 
excellent fixation strength and stiffness [23, 35, 77, 
79]. When comparing fixed loop- to adjustable loop 
suspension, superior biomechanical results have been 
observed for fixed loop devices [86, 92]. Compared 
to interference screws, less tunnel widening is seen 
when using suspensory fixation or cross pins, which 
becomes relevant in revision cases [21, 35, 80]. Graft 
elongation as well as longitudinal and transverse 
movements appear to be lower using interference 
screws, especially when screws are placed close to the 
joint surface [70, 77, 94].

Hardware-free press-fit techniques have been 
reported, showing promising outcomes comparable to 
traditional techniques with low rates of tunnel enlarge-
ment [4, 10, 44, 106].

Conclusion
Graft choice has a considerable influence on postop-
erative outcomes and remains an easily adjustable 
surgical factor affecting graft rupture and reoperation 
rates. When comparing anatomical, histological, and 
morphological features of commonly used grafts to the 
native ACL, none can perfectly replicate the complex 
characteristics of the native ACL. Biomechanically, 
however, both autograft and allograft show equivalent 
or increased characteristics compared to the native 
ACL and represent viable options for ACL-R. There 
further remains limited evidence as to the superiority 
of one graft in terms of maturation and incorporation, 
yet the available literature suggests that allograft may 
demonstrate slower graft incorporation and maturity 
compared to autograft tissue. Finally, methods of graft 
fixation have unique advantages and disadvantages 
that affect graft properties, and should be carefully 
considered when selecting the optimal graft for each 
patient.
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Advantages Weaknesses

Anatomy QT QT up to 20% 
more collagen 
fibers and a 
higher density of 
fibroblasts than 
BPTB
Possibility of 
different harvest 
configurations
Largest CSA

Sometimes short 
graft

BPTB Possibility to 
harvest with bone 
block on each site

Smallest CSA of all 
grafts
Not able to replace 
the complex ultras-
tructural character-
istics of the native 
ACL

HT Possibility of 
different graft 
configurations to 
individualize graft 
thickness

Unpredictable 
tendon thickness

Allograft All possible graft 
configurations 
depending on the 
used tendon
Customizing graft 
size to the indi-
vidual patient’s 
anatomy

Processed tissue

Biomechanics QT Similar load to 
failure than BPTB 
but higher than 
native ACL

Two layers may 
sometimes separate

BPTB Similar load to 
failure than QT 
but higher than 
native ACL

Bone tendon 
junction may have 
tendinosis

HT Common graft 
configurations 
exceed the load 
to failure of the 
native ACL

Load to failure 
depending on graft 
configuration
Tendency to supra-
physiologic stiffness 
if multistrand graft

Allograft Highest load to 
failures reported 
for the quadriceps 
tendon allograft

Older donor 
age negatively 
correlated with 
biomechanical 
characteristics
Graft sterilization 
and preservation 
techniques influ-
ence biomechanical 
graft properties

Advantages Weaknesses

Graft Incorpora-
tion

QT Faster incorpora-
tion compared to 
HT autograft
Possibility for one-
sided bone-to-
bone healing

Short tendon-
tunnel interface

BPTB Faster incorpora-
tion compared to 
HT autograft
Possible faster 
graft incorpora-
tion due to bone–
to–bone healing

Size mismatch

HT Delayed incorpora-
tion compared to 
BPTB and QT
no possibility of 
bone-to-bone 
healing

Allograft Slower graft 
maturation process 
as well as slower 
onset and rate of 
revascularization
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