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Abstract 

Purpose: Sports injuries among youth and adolescent athletes are a growing concern, particularly at the knee. Based 
on our current understanding of microtrauma and anterior cruciate ligament (ACL) healing characteristics, this clini-
cal commentary describes a comprehensive plan to better manage ACL microtrauma and mitigate the likelihood of 
progression to a non-contact macrotraumatic ACL rupture.

Methods: Medical literature related to non-contact ACL injuries among youth and adolescent athletes, collagen and 
ACL extracellular matrix metabolism, ACL microtrauma and sudden failure, and concerns related to current sports 
training were reviewed and synthesized into a comprehensive intervention plan.

Results: With consideration for biopsychosocial model health factors, proper nutrition and modified sports train-
ing with increased recovery time, a comprehensive primary ACL injury prevention plan is described for the purpose 
of better managing ACL microtrauma, thereby reducing the incidence of non-contact macrotraumatic ACL rupture 
among youth and adolescent athletes.

Conclusion: Preventing non-contact ACL injuries may require greater consideration for reducing accumulated ACL 
microtrauma. Proper nutrition including glycine-rich collagen peptides, or gelatin-vitamin C supplementation in 
combination with healthy sleep, and adjusted sports training periodization with increased recovery time may improve 
ACL extracellular matrix collagen deposition homeostasis, decreasing sudden non-contact ACL rupture incidence 
likelihood in youth and adolescent athletes. Successful implementation will require compliance from athletes, parents, 
coaches, the sports medicine healthcare team, and event organizers. Studies are needed to confirm the efficacy of 
these concepts.

Level of evidence: V

Introduction
As participation in youth and adolescent sports continues 
to increase, a direct impact on injury rates, medical costs, 
family burden, and time away from sport is observed [61]. 
Despite an abundance of well-designed exercise training 
approaches to address modifiable primary anterior cru-
ciate ligament (ACL) injury prevention, injuries continue 

to occur at a high frequency among adolescent and youth 
sport athletes [61, 63, 82]. The athlete remembers the 
instant “pop” of sudden ACL failure. Unfortunately, little 
if any consideration is given to the less “eventful” sports 
training microtrauma accumulation that preceded it [22, 
56, 104, 113]. We still don’t understand why an athlete 
can perform a single leg jump landing or running direc-
tion change pivot maneuver over and over again without 
injury, yet suddenly rupture their ACL when performing 
the same maneuver one more time [22, 56]. This clini-
cal commentary reviewed medical literature related to 
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non-contact ACL injuries among youth and adolescent 
athletes, collagen and ACL extracellular matrix metabo-
lism, ACL microtrauma and sudden failure, and concerns 
related to current sports training. This information was 
then synthesized into a comprehensive intervention plan 
for the purpose of better managing ACL microtrauma, 
thereby reducing the incidence of non-contact macro-
traumatic ACL rupture.

Non‑contact ACL injuries among youth 
and adolescent athletes
Knee ligament disease is a major healthcare concern [12, 
58] and locomotory system injuries from sports are pub-
lic health problems that contribute to a worldwide dis-
ability burden [61, 81]. Degenerative knee joint changes 
from acute ligament injuries represent a large portion of 
sports rehabilitation practice [16] and the best method 
for treating them is far from resolved [65, 67]. Among 
active people, ACL injury has an incidence as high as 
1 in 3000 [54] and nearly 75% of all ACL injuries occur 
without contact, even in high collision sports [13, 82]. 
Pediatric ACL tears represent most of these injuries, 
particularly among young female soccer and basketball 
athletes and in many, surgery is complicated by potential 
epiphyseal plate injuries [37]. Non-contact ACL injuries 
are occurring concurrently with increased organized 
sports and recreational activity involvement by girls and 

young women who are predisposed to the added influ-
ence of monthly menstrual cycle hormonal effects, and 
more frequent dynamic malalignment during single 
lower limb loading [58, 84]. The best current example of 
gender equity in sports may be overuse injury frequency. 
Since ACL injuries among youth and adolescent athletes 
may involve varying combinations of body function/
structure, activity/participation, or environmental/per-
sonal factors, use of a biopsychosocial model such as the 
International Classification of Functioning, Disability, 
and Health [103, 107] may provide the sports healthcare 
team with a helpful method to comprehensively consider 
which factors might be most relevant for each individual 
athlete. The injury potential for accumulated micro-
trauma ACL injury in youth and adolescent athletes is 
currently unknown [22]. However, a growing body of evi-
dence suggests that given the total sports training volume 
performed by most youth and adolescent athletes today, 
accumulated ACL microtrauma should be considered as 
an extrinsic, modifiable risk factor of high importance 
(Fig. 1).

Collagen and ACL extracellular matrix metabolism
The extracellular matrix (ECM) is a non-cellular, three-
dimensional macromolecular scaffold consisting of 
collagen, enzymes, and glycoproteins that provide bio-
chemical and biomechanical cues crucial to ligament 

Fig. 1 ACL extracellular matrix microtrauma example within the International Classification of Functioning, Disability and Health (ICF) framework 
[107]. Many youth and adolescent sport athletes display variable combined factors that lead to ACL microtrauma accumulation
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morphogenesis, differentiation and tensional homeosta-
sis [1, 14, 92]. Healthy ligaments are primarily comprised 
of type I and II collagen, along with glycosaminoglycans 
(GAGs) that surround and align them into a hierarchy of 
organized fibrils, fascicles, and fibers orientated along the 
ACL axis increasing its strength and resilience [45, 81]. 
Ligaments are 90% type I collagen, but after injury, higher 
type III collagen volume initially exists [62, 81]. To better 
withstand loads, the ACL responds to ECM mechanical 
and chemical environment changes through biomechani-
cal adaptations [62, 111]. Increased ECM degradation 
or “turnover” is associated with higher strain levels [77]. 
With immobilization, collagen synthesis decreases, 
anerobic and aerobic tissue metabolism is reduced, and 
ligament strength decreases. With restored mobility, 
ECM biomechanical properties begin to return to nor-
mal, however, ligament insertions (entheses) take longer 
to recover than other regions [106, 112].

Collagen crimp provides a functional buffer to immedi-
ate longitudinal ACL elongation under tensile loads with 
the nonlinear stress-strain curve “toe region” represent-
ing the gradual extension of these crimps [73, 74] (Fig. 2). 
As the “toe region” transitions into the linear stress-strain 
curve region, the crimps become completely extended, 
and resistance is provided by collagen triple helix fibers 
with the cross linkages stretching between these helices 
[111]. Toe region behavior is important because ACL 
strains during routine activities of daily living, sports 

training and rehabilitation primarily occur within this 
tissue loading zone. Crimp pattern morphological vari-
ations provide insight into ACL bundle function. In an 
ovine model, Zhao et al. [111] reported that the antero-
medial ACL bundle functions more during weightbearing 
stance stabilizing the knee by preventing anterior tibial 
translation [6, 111], while the posterolateral ACL bundle 
functions more near maximum extension and flexion to 
control internal-external tibial rotation [111, 112]. Less 
crimping results in earlier stiffness (smaller toe region) as 
the ACL is stretched.

ACL microtrauma and sudden failure
Microtrauma represents small amounts of structural 
ECM damage from repeated sub-failure loading that 
accumulates when its occurrence frequency outpaces 
natural repair [55, 113]. The magnitude of microtrau-
matic ACL damage that occurs from routine sports train-
ing is poorly understood [22, 56]. Microtrauma-induced 
vasculature damage may increase intraligamentous or 
intrasynovial pressure, reducing blood flow, increasing 
tissue hypoxia, and increasing collagen degeneration [32, 
46]. To minimize necrosis during naturally occurring 
periods of prolonged ischemia, ligaments possess lower 
metabolic activity rates than bone, cartilage, or muscle, 
and are more resistant to anerobic conditions during 
high force transmission [81]. Compared to other tis-
sues, ACL healing occurs more slowly in relationship to 

Fig. 2 A Crimping in the anteromedial (AM) ACL bundle; B Crimping in the posterolateral (PL) bundle; Coarse crimps are visible in the anterior 
AM bundle and throughout the PL bundle; C High magnification view of course crimping in the AM bundle; D High magnification view of fine 
crimping in the posterior AM bundle. Figure used with permission [112]
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applied movements and stresses [45, 72]. High anerobic 
capacity is an important healthy ligament trait, however, 
poor vascularity may further delay microtrauma healing 
[87], with ligament insertion enthesis mechanical prop-
erties taking longer to recover from microtrauma than 
adjacent regions [22, 105]. Femoral ACL enthesis fail-
ure may represent accumulated collagen fibril and fiber 
fatigue damage from accumulated microtrauma that has 
not had sufficient healing time [22].

When the ACL microtrauma rate exceeds the biologi-
cal repair rate, injury or failure may occur under normal 
loading conditions [22, 80] as accumulated microtrauma 
decreases ligament modulus of elasticity leading to sud-
den fatigue failure [95]. There can be considerable col-
lagen fiber disruption and disorganization in the human 
ACL at ultimate tensile failure without any visual mac-
roscopic tearing evidence [46, 66]. Collagen triple 
helix mechanical unfolding may be the key mechanism 
responsible for the generation of fascicle-level creep 
strain that leads to sudden ACL fatigue rupture under 
cyclic loading conditions [113]. In addition to concerns 
about sudden fatigue failure following microtrauma, 
the ACL “toe region” may be elongated [73, 74], poten-
tially yielding greater laxity during routine activities [56]. 
Using an in  vivo rabbit model, Panjabi et  al. [73] found 
that after sub-failure ACL injury (80% of the contralat-
eral control ACL), the ultimate load, deformation, and 

energy absorbed at failure did not change under high 
speed loading. However, the load deformation curve dis-
played a “toe region” hysteresis curve that was only 30% 
of the energy to failure of the control ligament during 
the sub-failure stretch cycle, suggesting damage to lon-
gitudinal collagen fibers and crosslinks [73] (Fig.  3). In 
a follow-up study, Panjabi and Courtney [72] found that 
the same sub-failure injury also increased ACL ultimate 
deformation. Accumulated microtrauma reduces ACL 
mechanical properties [46, 80] and lengthens the force-
displacement curve “toe region” resulting in increased 
laxity [74, 80]. Both accumulated microscopic ECM 
degradation and outright type I collagen destruction 
impairs ACL mechanical function. Stress-strain curve 
“toe region” shape, tangent modulus, and ECM tensile 
strength are directly dependent on fibrillary and molec-
ular level collagen crosslinks [38]. The accumulation of 
damage over the course of fatigue failure reduces a liga-
ment’s modulus of elasticity [95], increasing its suscep-
tibility to sudden failure. This may be especially true for 
girls and young women, given their smaller ACL diam-
eter and volume and decreased modulus of elasticity [13, 
20, 21]. Depending upon load magnitude, human ACL 
fatigue life can be as few as sixty severe loading cycles, 
with a larger force and a smaller cross-sectional area 
being predictive of greater sudden failure risk [56]. Stud-
ies are needed to better determine how recovery time 

Fig. 3 A Load deformation curves until failure of a typical pair of experimental and control ligaments with the load and unloading curves of the 
experimental ligament (hysteresis) for the 80% subfailure stretch [74]; and B Representative load deformation curves for experimental (E) and 
control (C) ligaments. Also shown is the load deformation curve of the 80% subfailure stretch of the experimental ligament (subfailure – E) [73]. 
Findings confirm impairment in both submaximal hysteresis patterns and deformation under failure loads for the partially injured ACL. Figures used 
with permission [73, 74]
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between ACL loading cycles might improve its resist-
ance to fatigue failure [56]. Longer or re-proportioned 
rest intervals between sports training loading cycles may 
help decrease cumulative ACL strain, thereby increasing 
fatigue life [79]. Therefore, thoughtful management of the 
number of knee pivot-type landing maneuvers that an 
athlete performs over a short time period may be helpful 
[56, 71].

Sudden running deceleration, directional changes, or 
single limb loading with valgus knee stress are known 
to create large, potentially injurious ACL loads [4, 29, 
36, 110]. Healthy entheses dissipate loading stresses 
away from the ACL insertions, however, they are highly 
susceptible to degeneration from overuse [11, 33], also 
possessing high surgical failure rates [57]. Given their 
lesser vascular density and smaller diameter blood ves-
sels, enthesis remodeling occurs more slowly than other 
ACL regions [5, 96], leading to greater potential for knee 
osteoarthritis and severe disability [15]. The femoral ACL 
enthesis has a 3.9 times more acute ACL attachment 
angle, 43% greater calcified fibrocartilage area, and 226% 
greater uncalcified cartilage depth than the tibial enthesis 
[9]. These characteristics in combination with hip inter-
nal-external rotational alignment during sudden single 
leg jump landings or running directional change move-
ments may influence both accumulated microtrauma 
and sudden ACL failure [10, 104]. As the hip approaches 
terminal internal rotation, peak ACL strain suddenly 
increases from direct femoral neck and acetabular rim 
contact [10, 104]. Non-uniform ACL stresses from accu-
mulated regional microtrauma, neurally-mediated sub-
stance P release from primary afferents, and prolonged 
exercise-induced hyperthermia can also create the central 
core ACL ECM degeneration that precedes ACL rupture 
[85, 91]. Although a healthy biological response to load-
ing modifies microtrauma accumulation, high intensity, 
frequency or total volume sports training may contribute 
to the loss of natural repair homeostasis increasing non-
contact sudden ACL rupture risk.

Concerns about sports training practices
We have a poor understanding of how biomechanical 
overload timing and severity from sports training influ-
ences the in vivo proteolytic activity that may drive ACL 
microtrauma beyond the threshold for natural repair 
homeostasis [19, 113]. High frequency, intensity, or total 
volume sport training may create situations where youth 
and adolescent athletes are at greater risk for compromis-
ing any of a number of developmental processes through 
chronic overtraining and hormonal dysregulation [37, 58, 
61, 68]. Through mechanotransduction, ACL cells sense 
mechanical environment changes and respond by modu-
lating biochemical mediators [12]. The nature and acuity 

of this healing response can prompt either an anabolic, 
homeostatic, or catabolic state, in which ECM produc-
tion and structural properties are respectively either 
increased, maintained, or reduced. Increased ECM col-
lagen production and incorporation occurs within hours 
of loading [53, 86] with circadian regulation of colla-
gen synthesis, cellular export, and collagen degradation 
attempting to maintain or restore tissue homeostasis 
[19]. Excessive sports training intensity, frequency, or 
total volume, however, may upset this balance.

Periodization principles were developed to improve 
neuromuscular or cardiopulmonary system endurance, 
strength or power [43, 48, 52]. These principles, how-
ever, do not adequately address individualized youth or 
adolescent athlete growth, recovery and remodeling vari-
ability, cognitive development, epiphyseal region matura-
tion, emotional development or hormonal changes [43, 
47, 52]. The homeostasis recovery requirements of lower 
metabolic rate ligaments and tendons are likewise not 
considered. Perhaps sports training periodization can be 
adapted to better promote ACL ECM homeostatic bal-
ance, thereby enhancing microtrauma recovery, healing, 
and remodeling. Sport training intensity, frequency and 
total volume have been widely studied for physiological 
and psychological performance purposes. In contrast, 
how best to optimize ACL ECM microtrauma recovery 
and maintain homeostasis in harmony with improved 
sport performance is poorly understood.

Developing a comprehensive primary non‑contact 
ACL injury prevention plan
Although not all injuries can be prevented, it appears 
that the youth and adolescent sport culture is falling 
short in minimizing both traumatic and overuse injuries. 
Parents, coaches, the sports healthcare team, and event 
organizers are all culpable [61]. At least 50% of the inju-
ries sustained by young athletes result from overuse from 
intrinsic (some non-modifiable) or extrinsic modifiable 
factors [61]. The plan we propose focuses on key extrin-
sic or modifiable factors that to date have been largely 
ignored. For today’s youth or adolescent athlete, sport 
training, conditioning, or competition often consumes 
most days of the week [61, 68]. With these considerations 
and the fact that the knee is the primary overuse injury 
location [82], we should take advantage of every oppor-
tunity to improve primary non-contact ACL injury pre-
vention. To better understand how these injuries occur, 
it is important to not just consider risk factors and injury 
mechanisms, but also protective factors and “mecha-
nisms of no injury” [60]. Early sport specialization or 
“professionalism”, high sport training intensity, frequency, 
total volume, excessive focus on winning or early talent 
development, prior injury, peripheral and central fatigue, 
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poor neuromuscular control/dynamic joint stability, psy-
chosocial stresses, extended sports seasons playing for 
multiple teams, and limited recovery time may refract 
injury prevention efforts [44, 61, 69, 70, 89, 100]. Many 
adolescent and youth athletes could also benefit from 
consultation with a nutritionist who promotes a “food 
first approach” to prevent and treat injuries [28, 61]. 
Proper nutrition and appropriate exercise mode and dos-
age may improve ACL ECM integrity [50]. Healthy sleep 
and nutrition are essential connective tissue recovery and 
healing factors [34]. The rise of technology has led mod-
ern man to assume more sedentary lifestyles compared to 
our ancestors, with greater access to, and volume of daily 
and nightly computer and handheld device use, e-gam-
ing, and the ingestion of calorie dense/nutrient level low 
“energy drinks or foods” [34, 68]. Factors such as these 
may heighten sympathetic nervous system activation 
increasing the plasma cortisol levels that compromise the 
capacity for the parasympathetic nervous system to effect 
microtrauma recovery, healing, and remodeling [2, 34, 
68]. Should athletes decide to intermittently use non-ste-
roidal medications to control knee pain or inflammation 
[97, 101], they may further impair the healing process 
[23, 24, 51]. Zitnay et  al. [113] confirmed that molecu-
lar level collagen damage from microtrauma initiated 
the ligament fatigue process that ultimately progresses 
to complete failure during repetitious submaximal cyclic 
loading.

We propose an innovative sport training approach that 
periodizes dedicated sport skill/strategy training with 
more ACL intense physical conditioning days. Since ACL 
health is highly dependent on maintaining a collagen-
rich ECM with strong cross-linking [28], in addition to 
ensuring adequate total energy intake and nutritional 
requirements, the addition of certain supplements may 
accelerate microtraumatically damaged ACL healing 
[17, 98]. Bovine hydrolyzed collagen or collagen peptides 
are short chain amino acids with type I and III colla-
gen that can be absorbed more rapidly into the circula-
tory system than collagen obtained from gelatin or other 
dietary sources [8, 88]. Amino acids enriched in collagen 
(proline, hydroyproline, and hydroxylysine) combined 
with vitamin C are known to enhance collagen synthe-
sis [8, 75, 88]. Although ligament ECM consists primar-
ily of type I collagen, type III collagen is advantageous 
during early healing because it more rapidly creates the 
cross-links that stabilize the damaged ACL loading curve 
“toe region”. Collagen synthesis and linkages are further 
enhanced with daily dietary requirements of zinc, sul-
fur containing amino acids, and beta-carotene [28, 99] 
(Table 1).

During microtrauma healing and remodeling, collagen 
is primarily added to the ACL periphery as it adapts to 

loading [8] with greater deposition occurring after rela-
tively short duration acute exercise bouts [26, 39, 42]. 
Combining ACL loading with appropriate nutritional 
support is essential [8, 28, 88, 99]. In a randomized, 
double-blind crossover clinical trial of 8 healthy men 
(27 ± 6 years of age), ingestion of 15 g of gelatin 1 hour 
before 6 minutes of jump roping doubled the collagen 
synthesis rate of engineered human ligaments within 
1 hour post-exercise, increasing collagen density and 
improving tissue mechanics compared to placebo, or 
low-gelatin groups [88]. In a study of 12 healthy men 
(22 ± 2.5 years of age), the blood serum growth hormone 
levels in blood drawn 15 minutes after an acute exercise 
bout were 7 times greater than serum levels at rest, and 
engineered ligaments displayed increased collagen con-
tent with enhanced tensile loading strength [102]. Baar 
[8] recommended integrating approximately 10 minutes 
of training targeting the injury prone ligament, to be 
performed either 6 hours before or after any other sport 
training. Thirty to 60 minutes before training, athletes 
should consume approximately 15 g of gelatin in either 
liquid or gel form for rapid absorption (proportional to 
bodyweight) [88]. An intermittent exercise program con-
sisting of 10 min of acute training followed by 6 hours of 
rest over 5 days has been found to produce more colla-
gen in engineered human ligaments than more continu-
ous training [76]. Having a daily protein intake of 2.3 g/
kg bodyweight/day can also facilitate tissue repair [28, 
99]. Vitamin D and calcium supplementation improves 
ligament enthesis and bone health and strength [99]. 
Omega-3 polyunsaturated fatty acids can provide natu-
ral anti-inflammatory effects and vitamin C intake of 
1 mg/kg bodyweight/day is essential for collagen cross-
link development [28]. Relatively short duration, more 
acute exercise training bouts also increases the expres-
sion of lysl oxidase the primary enzyme involved in colla-
gen synthesis and cross-linking [40], increasing collagen 
synthesis [31], creating a denser, stiffer, and stronger 
ECM [30]. In a study of patients ≥49 years of age with 
mild-to-moderate severity knee osteoarthritis, McAlin-
don et al. [59] found that the daily consumption of 10 g 
of collagen hydrolysate improved medial and lateral 
tibial hyaline cartilage health in patients with mild knee 
osteoarthritis. In agreement with this finding, a 24-week 
randomized clinical trial in college age varsity sport and 
club team athletes with activity-related knee pain showed 
that collagen hydrolate significantly decreased pain lev-
els [27]. Vitamin C is an essential collagen synthesis 
component for activating the lysyl oxidase, prolyl, and 
lysyl hydroxylasese enzymes that increase cross-linking. 
Accelerated collagen synthesis occurs as early as 4-hours 
post-exercise enhancing ACL ECM tensile strength 
through greater deposition and increased cross-linking 
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[88]. These results are similar to what occurs to bone 
in vivo with very few loading events followed by 6–8 h of 
rest resulting in the greatest bone mineral deposition [18] 
(Table 2).

Even though sport training frequency, intensity, and 
total volume influences ligament cellular process regu-
lation, the precise effects of different intervals remains 
unknown [22, 56, 113]. The current literature suggests 
that sport training periodization [43, 58] should be 
modified to better prevent ACL microtrauma accumu-
lation among youth and adolescent athletes. This may 
be particularly helpful in that youth and adolescent ath-
letes possess more robust neurovascular system medi-
ated healing capability than adults [3, 83, 109]. Since the 
human genetic code evolved from migratory, low inten-
sity and long duration aerobic metabolism [49, 64, 90], 
low demand aerobic activities such as submaximal effort 
cycling or walking, and soft tissue mobilization may fur-
ther assist circulatory system nutrient delivery to the 
healing ACL ECM, thereby increasing collagen deposi-
tion and metabolic waste removal [94]. An additional 
aerobic activity benefit is that it may simultaneously 
improve overall youth or adolescent athlete moods [68]. 
Growth hormone secretion is increased during sleep, 
when energy demands are low and the secretion of stress-
activated hormones such as cortisol and adrenaline is 
inhibited [34]. Decreased computer or phone screen time 
prior to sleeping may help decrease sympathetic nerv-
ous system arousal and associated hormonal responses 
re-balancing parasympathetic nervous system function 
[homeostasis] [61, 68]. Embedded within basal aerobic 
metabolism resides the greatest tissue healing capac-
ity through circulatory system nutrient delivery in the 
presence of repetitious low load active knee movements 
that facilitate nutrient transfer across the synovial joint 
membrane [68, 83, 93, 108]. With more balanced sport 
training recovery, cortisol stress hormone levels should 
decrease, and exercise-induced blood and plasma medi-
ated healing factor delivery should increase [102]. Cryo-
therapy alone or in contrast cycles with thermotherapy 
may increase circulatory system responses by facilitating 
the reflex vasoconstriction that enhances venous blood 
extravasation followed by the vasodilation that deliv-
ers nutrient-rich blood and plasma-mediated healing 
factors to the recovering tissues [35, 78]. This may also 
help alleviate the elevated ligament temperatures that 
promote ACL ECM collagen core degeneration [85, 91]. 
Modified sport training periodization should be imple-
mented in harmony with existing neuromuscular control 
and dynamic joint stability training activities that stimu-
late the cognitive engagement and motivation needed for 
positive sensorimotor cortex remodeling [7, 25, 41, 48].

Conclusion
Preventing non-contact ACL injuries may require greater 
consideration for reducing accumulated ACL micro-
trauma. Proper nutrition including glycine-rich collagen 
peptides, or gelatin-vitamin C supplementation in com-
bination with healthy sleep, and adjusted sports training 
periodization with increased recovery time may improve 
ACL ECM collagen deposition homeostasis, decreasing 
the sudden non-contact ACL rupture incidence likeli-
hood in youth and adolescent athletes. Successful imple-
mentation will require compliance from athletes, parents, 
coaches, the sports medicine healthcare team, and event 
organizers. Studies are needed to confirm the efficacy of 
these concepts.
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