Skip to main content

Table 1 Summary of Calibration Phantom, Densitometric and Modulus Relationships, Scanner and Scanner Settings

From: Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature

Author, Year

Anatomical Location

Phantom Type

Phantom Manufacturer

Densitometric Relationship (g/cm3)

Density-Modulus Relationship (MPa)

Validation Measure Experimental vs. FEM (Metric Value(s))

Scanner

Peak Voltage (kVp)

Tube Current (mA)/Time Product (mAs)

Voxel Dimensions (mm)

(Tarala et al. 2011)

Femur

HA

Image Analysis

ρHA = ρash

NR

Displacement

NR

NR

NR

NR

CLS Stem R2 = 0.95

EPOCH Stem R2 = 0.88

(Cong et al. 2011)

Femur

K2HPO4

Mindways

ρash = \( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) = −0.009 + 0.0007 HU

ρashapp = 0.6a

 

Axial Stiffness

Somatom Definition, Siemens

120

216 mAs

0.40 × 0.45 × 0.45

E = 14664ρash 1.49

R2(y = x) = −1.40

E = 10500ρash 2.29

R2(y = x) = −4.97

E = 17546ρash 3

R2(y = x) = −6.93

E = 8050ρash 1.16

R2(y = x) = 0.50

E = 15000e -4.91e-2.63ρash

R2(y = x) =0.71

E = 20000e ^ -5.19e-2.10ρash

R2(y = x) = 0.69

E = 55000e ^ -5.40e-2.63ρash

R2(y = x) = 0.69

(Dragomir-Daescu et al. 2011)

Femur

K2HPO4

Mindways

ρash = \( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) = −9*10−3 + 7* 10−4*HU

ρashapp = 0.6a

E = 14664ρash 1.49

Axial Stiffness

Somatom Definition, Siemens

120

216 mAs

0.40 × 0.30 to 0.45

R2 = 0.87

Ultimate Load

R2 = 0.93

(Keyak et al. 2011)

Femur

HA

Image Analysis

NR

NR

NR

NR

120

140 mAs

NR

(Trabelsi and Yosibash 2011)

Femur

K2HPO4

NR

ρash = 1.22\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) + 0.0523b

Ecort = 10200ρash 2.01

Etrab = 5307ρash + 469

Strain

NR

NR

NR

NR

R2 = 0.982 empirical

R2 = 0.939 MM-based

(Trabelsi et al. 2011)

Femur

K2HPO4

Mindways

ρash = 1.22\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) + 0.0523b

Ecort = 10200ρash 2.01

Etrab = 5307ρash + 469

Displacement

Lightspeed VCT, GE Healthcare

120

90 mAs

1.0 × 0.488 to 0.547

R2 = 0.871

Strain

R2 = 0.951

Axial Stiffness

R2 = 0.619

(Amin et al. 2011)

Femur

European Spine Phantom

NA

NR

NR

NE

Lightspeed QX/i, GE Healthcare

NR

NR

2.5 × 0.74 × 0.74

(Op Den Buijs and Dragomir-Daescu 2011)

Femur

K2HPO4

Mindways

ρash = \( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) = 7.0*10−4HUc

E = 29800ρash 1.56

Axial Stiffness

Somatom Definition, Siemens

120

216 mA

0.40 × 0.29 to 0.41

R2 = 0.76

Strength

R2 = 0.71

(Koivumäki et al. 2012a)

Femur

HA

Osteo

ρash = ρHA

E = 10095ρash

Fracture Load

Sensation 16, Siemens

120

100 mAs

0.75 × 0.25 × 0.25

R2 = 0.87

(Shim et al. 2012)

Femur

NR

NR

NR

E = 6750.3ρash 2.01

NE

NR

NR

NR

NR

(Gong et al. 2012)

Femur

HA

Image Analysis

ρHA to ρapp and converted to ρash d – Equation NR

E = 0.001 for

ρash = 0

E = 33900ρash 2.20 for

0 < ρash < 0.27

E = 5307ρash + 469 for

0.27 < ρash < 0.60

E = 10200ρash 2.01 for

ρash > 0.60

NE

Lightspeed 16, GE Healthcare

80

280 mA

2.5 × 0.9375 × 0.9375

(Tomaszewski et al. 2012)

Femur

HA

NR

ρash = 0.0633 + 0.887ρHA e

NR but referenced

NE

NR

NR

NR

NR

(Keaveny et al. 2012)

Femur

K2HPO4

Mindways

NR

NR but referenced

NE

NR

80

280 mAs

3.0 × 0.78 to 0.94 × 0.78 to 0.94

(Koivumäki et al. 2012b)

Femur

HA

Osteo

NR

NR

Cortical Fracture Load

Sensation 16, Siemens

120

100 mAs

0.75 × 0.25 × 0.25

R2 = 0.73

(Ruess et al. 2012)

Femur

NR

NR

\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) = 10−3(0.793)HU

ρash = 1.22\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) + 0.0523b

Ecort = 10200ρash 2.01

Etrab = 5307ρash + 469

Strain

Brilliance 64, Phillips

120

250 mAs

1.25 × 0.195 × 0.195

R2 = 0.918–0.981 See paper for specifics by method

(Eberle et al. 2013a)

Femur

K2HPO4

Mindways

ρash = 1.22\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) + 0.0523b

ρHA = 1.15\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) - 0.0073f

ρash = 0.8772ρHA + 0.0789

ρapp = 1.58 ρash + 0.00011

 

Strain

Lightspeed VCT, GE Healthcare

120

90 mAs

1.0 × 0.547 × 0.547 OR 1.0 × 0.488 × 0.488

E = 10200ρash 2.01

Bland-Altman (mean) −9%

E = 6850ρapp 1.49

Bland-Altman (mean) −10.6%

E = 15100\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4}^{2.225} \)

Bland-Altman (mean) −7.9%

 

Displacement

E = 10200ρash 2.01

Bland-Altman (mean) −20.9%

E = 6850ρapp 1.49

Bland-Altman (mean) −22.9%

E = 15100\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4}^{2.225} \)

Bland-Altman (mean) 1.6%

 

Axial Stiffness

E = 10200ρash 2.01

Bland-Altman (mean) 15.8%

E = 6850ρapp 1.49

Bland-Altman (mean) 22.6%

E = 15100\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4}^{2.225} \)

Bland-Altman (mean) −9.6%

(Eberle et al. 2013b)

Femur

K2HPO4

Mindways

ρash = 1.22\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) + 0.0523b

ρHA = 1.15\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) - 0.0073f

ρash = 0.8772ρHA +0.0789

ρapp = 1.58 ρash + 0.00011

 

Strain

Lightspeed VCT, GE Healthcare

120

90 mAs

1.0 × 0.547 × 0.547 OR 1.0 × 0.488 × 0.488

E = 12486\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4}^{1.16} \)

Relative Error (mean) 5%

E = 8346ρapp 1.50

Relative Error (mean) −28%

E = 8050ρash 1.16

Relative Error (mean) 18%

E = 25000e^ -5.40e-2.10ρash

Relative Error (mean) −16%

E = 6850ρapp 1.49

Relative Error (mean) −12%

 

Displacement

E = 12486 \( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4}^{1.16} \)

Relative Error (mean) −10%

E = 8346ρapp 1.50

Relative Error (mean) −40%

E = 8050ρash 1.16

Relative Error (mean) 3%

E = 25000e-5.40e-2.10ρash

Relative Error (mean) −29%

E = 6850ρapp 1.49

Relative Error (mean) −26%

 

Stiffness (N/mm)

E = 12486 \( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4}^{1.16} \)

Relative Error (mean) 6%

E = 8346ρapp 1.50

Relative Error (mean) 56%

E = 8050ρash 1.16

Relative Error (mean) −6%

E = 25000e-5.40e-2.10ρash

Relative Error (mean) 31%

E = 6850ρapp 1.49

Relative Error (mean) 28%

(Haider et al. 2013)

Femur

K2HPO4

Mindways

ρash = 0.00106\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) + 0.0389g

ρashapp = 0.6b

E = 6850ρapp 1.49

NE

NR

NR

NR

0.5 × 0.49 × 0.49

(Dall’Ara et al. 2012)

Femur

HA

QMR

BMD to BV/TV from μCT

Relation to BV/TV – Equation NR

Axial Stiffness

Brilliance 64, Phillips

120

100 mAs

1.0 × 0.33 × 0.33

Stance: R2 = 0.449 Side: R2 = 0.869

(Nishiyama et al. 2013)

Femur

HA

B-MAS200

ρash = ρHA

E = 10500ρash 2.29

Axial Stiffness

Discovery CT750HD, GE Healthcare

120

60 mAs

0.625 × 0.439 × 0.439

R2 = 0.89

Failure Load

R2 = 0.81

(Kersh et al. 2013)

Femur

HA

NR

BV/TV = 9.3BMD + 3 from μCTh

NR

NE

Brilliance 64, Phillips

120

100 mA

0.60 × 0.36 × 0.36

(Keyak et al. 2013)

Femur

HA

Image Analysis

ρash = 0.0633 + 0.887ρHA i

Etrab = 14900ρash 1.86

NE

Sensation 4, Siemens

120

140 mAs

NR

(Hambli and Allaoui 2013)

Femur

HA

Osteo

ρHA = 6.932*10−4HU - 5.68*10−4

ρash = 1.22\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) + 0.0523b

E = 33900ρash 2.20 for

0 < ρash < 0.27

E = 5307ρash + 469 for

0.27 < ρash < 0.60

E = 10200ρash 2.01 for ρash > 0.60

Fracture Load

Somatom Plus 4, Siemens

120

160 mAs

0.70 × 0.25 × 0.25

R2 = 0.943

(Carballido-Gamio et al. 2013)

Femur

Both

Mindways & Image Analysis

NR

NR

NE

Sensation, Siemens

NR

NR

2.5 × 0.74 × 0.74 & 1.0 × 0.98 × 0.98

(Nishiyama et al. 2014)

Femur

Both

Mindways &

B-MAS200

ρash = ρHA

E = 10500ρash 2.29

NE

Somatom Cardiac 64, Siemens

120

250 mAs

0.50 × 0.625 × 0.625

(Luisier et al. 2014)

Femur

HA

QMR

BMD to BV/TV from μCTj

Eo = 6614

Ultimate Force

Brilliance 64, Phillips

120

100 mA

1.0 × 0.33 × 0.33

Stance: R2 = 0.797 Side: R2 = 0.842

(Enns-Bray et al. 2014)

Femur

NR

NR

ρash = ρQCT

E3 = 10500ρash 2.29

See paper for anisotropic modulus

Axial Stiffness

Discovery CT750HD, GE Healthcare

120

60 mAs

0.625 × 0.625 × 0.625

Anisotropic: R2 = 0.783 Isotropic: R2 = 0.792

Ultimate Strength

Anisotropic: R2 = 0.355 Isotropic: R2 = 0.350

(Anez-Bustillos et al. 2013)

Femur

HA

Image Analysis

NR

Experimentally derived

Axial Rigidity

ACQSim, Phillips

120

220 mA

3.0 × 0.9375 × 0.9375

R2 = 0.82

Bending Rigidity

R2 = 0.86

Failure Load

R2 = 0.89

(Mirzaei et al. 2014)

Femur

K2HPO4

Mindways

ρash = 1.22\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) + 0.0526b

E = 33900ρash 2.20 for

0 < ρash < 0.27

E = 5307ρash + 469 for

0.27 < ρash < 0.60

E = 10200ρash 2.01 for ρash > 0.60

Load

Somatom 64, Siemens

140

80 mAs

1.0 × 0.50 × 0.50

R2 = 0.809–0.886 See paper for specifics by method

(Arachchi et al. 2015)

Femur

HA

NR

NR

NR

NE

Brilliance 64, Phillips & Somatom Plus 4, Siemens

140

206 mAs

2.0 × 0.29 × 0.29

(Kheirollahi and Luo 2015)

Femur

NR

NR

ρash = 0.04162 + 0.000854HU

E = 10500ρash 2.29

NE

NR

NR

NR

NR

(Carballido-gamio et al. 2015)

Femur

Both

Mindways & Image Analysis

vBMD reported

NR

NE

Lightspeed QX-I, Lightspeed VCT, Lightspeed 16, GE Healthcare & Biograph 16, Siemens

NR

NR

2.0 × 0.742 × 0.742 OR 2.5 × 0.938 × 0.938 OR 1.0 × 0.977 × 0.977

(Kaneko et al. 2015)

Femur

HA

B-MAS200

ρash = ρHA

NR

NE

Light Speed Ultra16, GE Healthcare

120

80 mA

NR

(Varghese et al. 2011)

Femur, Tibia, Humerus, Radius

K2HPO4

Mindways

NR

NR

Strain

Lightspeed 16, GE Healthcare

80

200 mAs

0.625 × 0.625 × 0.625

R2 = 0.61–0.99 See paper for specifics by method

(Kopperdhal et al. 2014)

Spine & Femur

HA

Image Analysis

BMD related to HU

NR

NE

Somatom Plus 4, Siemens

120

150 mAs

Spine: 1.0 × 1.0 × 1.0

Femur: 1.5 × 1.5 × 1.5

(Kleerekoper et al. 2014)

Spine & Femur

NR

NR

NR

NR

NE

NR

NR

NR

NR

(Keaveny et al. 2014)

Spine & Femur

HA

European Spine Phantom

NR

NR

NE

NR

120

Femur: 170 mAs

Spine: 100 mAs

NR

(Zeinali et al. 2010)

Spine

K2HPO4

Mindways

BMD related to HU

Ez = −34.7 + 3230\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \)

Ez = −2980\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) 1.05

\( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \) = 0.0527 g/cc

Ex = Ey = 0.333Ez

Strength

Somatom Plus 64, Siemens

140

400 mA

1.0 × 0.25 × 0.25

Linear elastic–plastic: R2 = 0.937 Linear elastic-perfectly plastic: R2 = 0.855 Linear elastic: R2 = 0.831 Min. sectional: R2 = 0.863

(Tawara et al. 2010)

Spine

HA

B-MAS200

ρapp = 0.0 (HU < −1)

ρapp = (0.733HU + 4.51)*10−3 (−1 ≤ HU)

E = 0.001 for

ρash = 0

E = 33900ρash 2.20 for

0 < ρash < 0.27

E = 5307ρash + 469 for

0.27 < ρash < 0.60

E = 10200ρash 2.01 for

ρash > 0.60

NE

Hitachi

120

NR

1.0 × 0.39 × 0.39

(Unnikrishnan and Morgan 2011)

Spine

HA

Image Analysis

ρHA based

Ezz = −34.7 + 3.230ρHA

Exx = Eyy = 0.333

NE

Light Speed VCT, GE Healthcare

120

240 mA

0.625 × 0.31 × 0.31

(Christiansen et al. 2011)

Spine

HA

Image Analysis

ρHA based

NR

NE

Light Speed Plus, GE Healthcare

120

100 to 360 mAs

2.5 × 0.68 × 0.68

(Imai 2011)

Spine

HA

NR

ρash = ρHA

Ecort = 10000

NE

Light Speed QX/i, GE Healthcare

120

360 mA

2.0 × 0.35 × 0.35

(Dall’Ara et al. 2012)

Spine

K2HPO4

Mindways

BV/TV using the relationships

BV/TV = 0 for BMD < −100 BV/TV = 0.0942*BMD-0.0297 for −100 < BMD < 1061

BV/TV = 1061 for BMD >1061

E = 8780

Strength

Brilliance 64, Pillips

120

100 mA

0.45 × 0.39 × 0.39

hFE: R2 = 0.79

Failure Load

hFE: R2 = 0.78

(Wang et al. 2012)

Spine

HA

Image Analysis

vBMD based

NR

Strength

NR

120

150 mAs

NR

R2 = 0.85

(Unnikrishnan et al. 2013)

Spine

HA

Image Analysis

BMD related to HU

Ez = −34.7 + 3230ρHA

Ez = −2980ρHA 1.05

ρHA = 0.0527 g/cc Ex = Ey = 0.333Ez

NE

Light Speed VCT, GE Healthcare

120

240 mA

0.625 × 0.3125 × 0.3125

(Lu et al. 2014a)

Spine

Both

Mindways & QRM

NR

NR

NE

Sensation 64, Siemens

120

360 mAs

0.60 × 0.32 × 0.32 OR 0.30 × 0.18 × 0.18

(Matsuura et al. 2014)

Spine

K2HPO4

Mindways

ρash = \( {\uprho}_{{\mathrm{K}}_2\mathrm{H}\mathrm{P}{\mathrm{O}}_4} \)

ρash = 0: E = 0.001

ρash > 0: E = 1890 ρash 1.92

Fracture Load

Somatom Definition, Siemens

120

210 mA

0.40 × 0.30 × 0.30

R2 = 0.78

Axial Stiffness

R2 = 0.39

(Lu et al. 2014b)

Spine

HA

QMR

BMD related to HU

Ez = 2980(ρHA/1000)1.05 for ρHA < 52.7 [mgHA/cc]

Ez = = −34.7 + 3230ρHA for ρHA > 52.7 [mgHA/cc]

NE

Mx8000, Phillips

90 & 120

100 & 150 mAs

1.3 × 0.30 × 0.30

(Campoli et al. 2014)

Scapula

NR

NR

ρapp = HU + 0.00039

E = 6850ρapp 1.49

NE

Somatom Definition, Siemens

NR

NR

0.6 × 0.6 × 0.6

(Pomwenger et al. 2014)

Scapula

NR

NR

ρapp = 1.1187*10−3*HUk assumed ρapp = 0 no bone & ρapp = 1.8 for bone

E = 1049.45ρapp 2

ρapp < 0.35

E = 3000ρapp 3

ρapp > 0.35

NE

NR

NR

NR

NR

(Hermida et al. 2014)

Scapula

K2HPO4

Mindways

NR

Ecort = 20000

NE

NR

NR

NR

NR

(Edwards et al. 2013)

Tibia

HA

QRM

ρHA = BMD

ρappHA = 0.626

E3 = 6570ρapp 1.37

Emin = 0.01

E1 = 0.574E3

E2 = 0.577E3

Rotation Stiffness

Brightspeed, GE Healthcare

120

200 mA

0.625 × 0.352 × 0.352

R2 = 0.920

Ultimate Strength

R2 = 0.753

(Nazemi et al. 2015)

Tibia

K2HPO4

Mindways

ρash = 0.55 ρapp g

ρash = 0.597ρdry g

ρreal = 1.8 g/ccl

ρapp = ρreal*BV/TV

BMD = 0.904ρash - 0.0321g

ρash = 1.06*BMD + 0.0389g

 

Axial Stiffness

Aquilion 64, Tobisha

120

150 mAs

0.5 × 0.5 × 0.5

E = 15520ρapp 1.93

R2 = 0.75

E = 6570ρapp 1.37

R2 = 0.65

E = 33200ρash 2.2

R2 = 0.70

E = 4778ρapp 1.99

R2 = 0.69

E = 3311ρdry 1.66

R2 = 0.67

E = 3890ρdry 2

R2 = 0.69

E = 6310(BV/TV)2.1

R2 = 0.70

(McErlain et al. 2011)

Knee

SB3

Gamex

NR

NR

NE

Multistar, Siemens

90

40 mAs

NR

(Synek et al. 2015)

Radius

NR

NR

BMD to BV/TV from μCT

Multiple – Refer to paper

Axial Stiffness

Discovery CT750HD. GE Healthcare

140

260 mA

0.63 × 0.20 × 0.20

Isotropic-Homogeneous R2 = 0.500

Isotropic-Heterogeneous R2 = 0.816

Orthotropic-Heterogeneous R2 = 0.807

  1. HA Hydroxyapatite, K 2 HPO 4 Dipotassium Phosphate, NR Not Reported, BMD Bone Mineral Density, BV/TV Bone Volume/Total Volume, NE No Experimental; a (Schileo et al. 2008); b (Les et al. 1994); c (Suzuki et al. 1991); d (Keyak et al. 1997); e (Keyak et al. 2005); (Faulkner et al. 1993); g (Keyak et al. 1994); h (Dall’Ara et al. 2011); I (Keyak et al. 2005); j (Pahr and Zysset 2009); k (Gupta and Dan 2004); l (Carter and Hayes 1977)