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What quantitative mechanical loading
stimulates in vitro cultivation best?
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Abstract

Articular cartilage has limited regeneration capacities. One of the factors that appear to affect the in vitro cultivation
of articular cartilage is mechanical stimulation. So far, no combination of parameters has been identified that offers
the best results. The goal is to review the literature in search of the best available set of quantitative mechanical
stimuli that lead to optimal in vitro cultivation.
The databases Scopus and PubMed were used to survey the literature, and strict in- and exclusion criteria were
applied regarding the presence of quantitative data. The review was performed by studying the type of loading
(hydrostatic compression or direct compression), the loading magnitude, the frequency and the loading regime
(duration of the loading) in comparison to quantitative evidence of cartilage quality response (cellular, signaling
and mechanical).
Thirty-three studies met all criteria of which 8 studied human, 20 bovine, 2 equine, 1 ovine, 1 porcine and 1 canine
cells using four different types of cultivated constructs. Six studies investigated loading magnitude within the same
setup, three studies the frequency, and seven the loading regime. Nine studies presented mechanical tissue
response. The studies suggest that a certain threshold exits for enhanced cartilage in vitro cultivation of explants
(>20 % strain and 0.5 Hz), and that chondrocyte-seeded cultivated constructs show best results when loaded with
physiological mechanical stimuli. That is a loading pressure between 5–10 MPa and a loading frequency of 1 Hz
exerted at intermittent intervals for a period of a week or longer. Critical aspects remain to be answered for
translation into in vivo therapies.
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Introduction
Articular cartilage is a nonlinearly permeable, viscoelastic
multiphasic material containing chondrocytes and proteo-
glycan aggregates (3-10 % of volume) that are surrounded
by an extracellular matrix (ECM), whose primary constitu-
ents are water with mobile ions (60-85 % of volume) and
collagen type II (10-30 % of volume) (Fig. 1) (Mow et al.
1999; Schulz and Bader 2007; Khan and Scott 2009;
Madry et al. 2010). Damaged articular cartilage presents
itself as partial chondral, full thickness chondral or osteo-
chondral defects (Fig. 1). Partial or full thickness lesions
show limited ability to regenerate due to its avascular and
highly structured nature, which prevents progenitor cells
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and chondrocytes to migrate to the defect-site (Heath and
Magari 1996; Zengerink et al. 2006; Khan et al. 2008;
Magnussen et al. 2008; Khan and Scott 2009). For osteo-
chondral defects, the subchondral bone plate is breached
leading to an inflow of blood containing bone marrow-
derived mesenchymal stem cells (BMMSCs) that populate
the defect site (Khan and Scott 2009; Madry et al. 2011).
These cells may differentiate into chondrocytic cells,
which in turn can regenerate the ECM (Angele et al. 2003;
Bahuleyan et al. 2009). This repair tissue mostly contains
collagen type I and degrades over time (Khan et al. 2008;
Madry et al. 2011; Hannon et al. 2014). However, newer
tissue engineered techniques are clinically applied in
which tissue engineered constructs with or without
(autologous) cells are used to enhance cartilage regener-
ation with more hyaline like cartilage as result (Brittberg
2010; Fortier et al. 2011; Hildner et al. 2011; Spiller et al.
2011). Over the last decade, numerous studies have been
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Fig. 1 Cellular structure of cartilage. Defects are sustained in different layers: partial thickness chondral defect (up till the deep zone), full thickness
chondral defect (up till the calcified cartilage) and osteochondral defect (crossing the subchondral bone plate) base on (Madry et al. 2010)
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published that unravelled important factors influencing
the cartilage regeneration process (e.g. (Chung and
Burdick 2008; Khan et al. 2008; Brittberg 2010; Fortier
et al. 2011; Hildner et al. 2011; Spiller et al. 2011)).
This review will focus on the mechanical loading to pro-

mote cartilage cultivation. Mechanical stimuli promote
ECM production (Grodzinsky et al. 2000), increase chon-
drocyte activity, and aid to protect the ECM temporarily
from excessive loading (Mow et al. 1999). Due to its
unique composition, cartilage can be loaded up to 18 MPa
in vivo, which is up to 15 times the body weight (Darling
and Athanasiou 2003; Elder and Athanasiou 2009; Spiller
et al. 2011). If an underdeveloped ECM sustains such high
loading, it can collapse; and can further deteriorate even-
tually leading to a full stop in intrinsic repair (Darling and
Athanasiou 2003). A similar mechanism is seen when
damaged cartilage (with a disrupted ECM) is loaded dur-
ing gait with physiological values of around 5 times the
body weight (van Dijk et al. 2010a, 2010b).
On the other hand, biomechanical intermittent cyclic

loading has shown to stimulate regeneration of cartilage
tissue (Arokoski et al. 2000; Bonassar et al. 2001; Waldman
et al. 2004; Chung and Burdick 2008; Fan and Waldman
2010; Hess et al. 2010; Potier et al. 2010). Tissue engineer-
ing studies show that dynamic compression increases car-
tilage in vitro cultivation rather than static compression
(Schulz and Bader 2007; Elder and Athanasiou 2008, 2009;
Mizuno and Ogawa 2011). Important loading parameters
appear to be the magnitude, frequency and duration
(Ikenoue et al. 2003). So far, no combination of parameters
has been identified that offers the best result in in vivo
regeneration. Unfortunately, a first search in the literature
indicated that none of the retrieved in vivo studies pro-
vided quantitative values to identify this combination.
Therefore, the goal of this study is to review the literature
in search of the best available set of quantitative mec-
hanical stimuli that increase cartilage in vitro cultivation;
and possibly deduct suggestions for in vivo cartilage
regeneration.

Review
Methods
The databases Scopus and PubMed where used to sur-
vey the literature. The following keywords and synonyms
were used to retrieve candidate studies: (Mechan* OR
Biomech*) AND (load* OR loading OR stimulat* OR
compress* OR shear OR forces) AND articular cartilage
AND (repair OR regeneration OR healing). Both original
and review papers were included from 1980 until April
18th 2015 and the search was limited to English language.
The in- and exclusion criteria were formulated based on
strict interpretation of the research question.
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Inclusion criteria
Studies were included if they:

� Studied dynamic loading.
� Harvested either chondrocyte or BMMSC cultures

from larger animal models (canine, bovine, equine,
porcine, human). Larger animals provide a closer
environment and metabolism to the human cartilage
case (Chu et al. 2010).

� Provided quantitative values of the applied
mechanical stimuli (loading magnitude, frequency,
type and regime).

� Provided quantitative values of the effect on the
cartilage quality response (e.g. cellular or mRNA
response in terms of increased percentage).

Exclusion criteria
Studies were excluded if they only:

� Used computational methods to simulate the
mechanical properties or regenerating capabilities
of cartilage.

� Determined the mechanical properties of cartilage
(e.g. stiffness or elastic strain limit).

� Presented operative techniques to promote cartilage
healing (e.g. grafting and graft-ingrowth,
arthroplasty, or microfracturing).

� Studied in vivo loading to stimulate cartilage, for
example by specific physical therapy protocols, and
did not provide quantitative data on the mechanical
stimuli and/or effect on the cartilage quality response.

� Studied non-articular cartilage (e.g. cartilage of the ear).
� Examined the effect of non-mechanical factors

(e.g. hormonal, chemical, or electrical) that can
stimulate cartilage cultivation or regeneration.

� Harvested chondrocytes or stem cells from small
animals (e.g. rodent) (Chu et al. 2010).

� Performed continuous static compression as
loading regime.

From the included studies, the cell donor and culture,
the construct, the additives, the type of loading (hydro-
static compression or direct compression), the loading
magnitude, the frequency and the loading regime (dur-
ation of the loading) were documented as input parame-
ters, and the quantitative evidence of cartilage quality
response (cellular, signaling and mechanical responses)
was documented as output parameter. Unfortunately,
variety in testing conditions such as cell source, cultivated
constructs, and the chosen cartilage quality response pa-
rameters only allowed for a qualitative comparison. To en-
hance comparison, the applied loading regime is presented
in one format: the frequency, the total time of loading per
day, the total number of days and total loading hours.
Additionally, the loads were mostly expressed in pressure
(P or σ equals force per area expressed in Pa) (Shepherd
and Seedhom 1999; Darling and Athanasiou 2003). How-
ever, some studies use the strain (ℇ), defined as the per-
centage of cartilage thickness decrease. To enhance
uniformity, the strain values were converted into pressure
values using the formula for linear elastic materials:

σ ¼ E⋅ε ð1Þ

Where E is the Young’s modulus, which is a material
property, and σ is the compression load expressed in Pa.
Since cartilage is a viscoelastic multiphasic material
(Mow et al. 1999), multiple parameters are needed to de-
scribe its material behaviour. In this study, an approxima-
tion of the Young’s modulus was used: the ‘instantaneous’
compressive modulus of cartilage (Ec) (Shepherd and
Seedhom 1999). Substituting Ec and ℇ in Equation (1)
gives the compression load. The value of Ec depends on
the joint donor site (Shepherd and Seedhom 1999). To
this end, the range of values for the human knee joint (be-
tween 6 and 12 MPa) was filled out in Eq. (1) together
with the applied strain to calculate Ec for studies that used
the human knee, the bovine and canine stifle joint as
donor sites (Shepherd and Seedhom 1999). In a similar
fashion, the range of values for the human ankle (between
11 and 19 MPa) was filled out for bovine or canine meta-
tarsal donor joints (Shepherd and Seedhom 1999).
Finally, this review presents the changes found in cellu-

lar, signaling and mechanical response due to the mechan-
ical stimuli, which were indicated as an increased (+) or
decreased (−) response compared to controls or as no
change or similar (=) (Tables 1, 2, 3, 4, 5).

Results
After a first title and abstract scan of the 836 hits com-
bined from Scopus and PubMed, 106 papers were left to
be reviewed completely, which eventually resulted in 33
studies that were eligible for inclusion. Generally, the tis-
sue engineering studies investigated the effect of mechan-
ical stimuli on cultivated constructs at least in one study
arm compared to unstimulated controls (Darling and
Athanasiou 2003; Mauck et al. 2003). Tables 1, 2, 3, 4, 5
summarize the results.

Cell sources, cultivated constructs and additives
Two cell sources (chondrocytes and BMMSC) were stud-
ied from 6 mammal types: 8 studies used human cells, 20
bovine, 2 equine, 1 ovine, 1 porcine and 1 canine. First, 27
studies used chondrocytes as cell source (Tables 1, 2, 3, 4).
Chondrocytes are responsible for the production of the
ECM (Meachim and Stockwell 1973; Buckwalter and
Mankin 1998; Cohen et al. 1998), since they are likely to
synthesize collagen type II and proteoglycans (Schulz and



Table 1 Results on changes in cellular, signaling and/or mechanical response to explants for hydrostatic and direct compression (Fig. 2). PG is proteoglycan; MMP is matrix
metalloproteinases; # is number; h is hours; h/day is hours per day; − is decrease or inhibition; = is no change or status quo; + is increase; ++ is highest increase. *-symbol
implies pressure converted from strain, which is added in brackets

Study Cell source, cultivated
construct, additive(s)

Magnitude (MPa) Freq (Hz) Loading (h/day) Loading (# days) Loading (total h) Culture composition
(change -, =, +)

mRNA response
(change -, =, +)

Other findings
(change -, =, +)

Hydrostatic compression

Parkinnen 1993
(Parkkinen et al. 1993)

Bovine 5 0.5 1.5 1 1.5 + PG synthesis

Explant 0.25

Fetal calf serum 0.05 = PG synthesis

0.0167

Direct compression

Li 2013 (Li et al. 2013) Young Bovine Bruised
Explant Serum free medium,
20 g/ml ascorbic acid

0.6-1.2* (10 %) 0.5 4 4 16 + PG synthesis + aggrecan Control show better
results compared to
bruised explants+ collagen II

1.2-2.4* (20 %) ++ PG synthesis ++ aggrecan

++ collagen II

1.8-3.6* (30 %) + PG synthesis + aggrecan

= collagen II

Okuda 2013 (Okuda
et al. 2013)

Young Bovine, Explant 20 %
Fetal bovine serum; 50 mg/
L L-ascorbic acid

0.6-1.2* (10 %) 1 3.5 5 17.5 + sGAG + compressive
modulus

+ # of cells

Torzilli 1996 (Torzilli
et al. 1996)

Bovine, Explant 10 % Fetal
bovine serum; 50 μg/mL
ascorbic acid

1 1 24 1 24 - PG synthesis

Torzilli 2011 (Torzilli
et al. 2011)

Bovine, Explant 10 % Fetal
bovine serum; 50 μg/mL
ascorbic acid

0.5 (10 %) 0.5 24 3 72 = PG content = MMP −3, −13
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Table 2 Results on changes in cellular, signaling and/or mechanical response to chondrocyte-seeded meshes for hydrostatic and direct compression (Fig. 2). PGA is polyglycolic
acid; PEGT/PBT is polyethylene glycol terephthalate/polybutylene terephthalate; Sox9 is the gene that regulates chondrogenic differentiation; # is number; h is hours; h/day is
hours per day; − is decrease or inhibition; = is no change or status quo; + is increase; ++ is highest increase. *-symbol implies pressure converted from strain, which is added in
brackets; **loading was performed every other day for 1 h twice a day with 8 h rest in between

Study Cell source, cultivated
construct, additive(s)

Magnitude (MPa) Freq (Hz) Loading (h/day) Loading (# days) Loading (total h) Culture composition
(change -, =, +)

mRNA response
(change -, =, +)

Other findings
(change -, =, +)

Hydrostatic compression

Carver 1999a
(Carver and
Heath 1999a)

Young equine Mesh nonwoven
PGA 10 % Fetal bovine serum;
50 μg/mL ascorbic acid

3.4 0.25 2 35 70 + GAG GAG increase
strongest at 6.9 MPa
for young= collagen II

= # of chondrocytes

6.9 + GAG

+ collagen II

= # of chondrocytes

Adult equine Mesh nonwoven
PGA 10 % Fetal bovine serum;
50 μg/mL ascorbic acid

3.4 + GAG Collagen II increase
strongest at 6.9 MPa
for young and adult+ collagen II

= # of chondrocytes

6.9 = GAG

+ collagen II

= # of chondrocytes

Carver 1999b
(Carver and
Heath 1999b)

Young equine Mesh nonwoven
PGA 10 % Fetal bovine serum;
50 μg/mL ascorbic acid

3.44 0.25 2 35 70 + GAG + E- modulus

+ collagen

= # of chondrocytes

Direct compression

Démarteau
2003
(Démarteau
et al. 2003)

Human Mesh PEGT/PBT Foam
10 % Fetal bovine serum; growth
factor TGF-β1, FGF-2, PDGFbb

0.3-0.6* (5 %) 0.1 4 3 12 + GAG = Sox9 Measured peak
loading 0.018 MPa

= aggrecan

= collagen II

Hilz 2014 (Hilz
et al. 2014)

Bovine, Mesh Polyurethane 25 %
Fetal calf serum;50 μg/mL
L-ascorbic acid

1.2-2.4* (20 %) 1 2** 21 16 + GAG =Sox9

+ aggrecan +collagen II

+ collagen II

El-ayoubi 2011
(El-Ayoubi
et al. 2011)

Canine, Mesh poly-L-Lactide 10 %
Fetal bovine serum

0.6-1.2* (10 %) 1 3 14 42 + # of cells
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Table 3 Results on changes in cellular, signaling and/or mechanical response to chondrocyte cultivated constructs for hydrostatic compression (Fig. 2). PG is proteoglycan; MMP
is matrix metalloproteinases; h is hours; h/day is hours per day;;- is decrease or inhibition; + is increase; ++ is highest increase; = is no change or status quo. *-symbol implies
pressure converted from strain, which is added in brackets, **-symbol is increased aggrecan only with 4 h

Study Cell source, cultivated
construct, additive(s)

Magnitude (MPa) Freq (Hz) Loading (h/day) Loading (# days) Loading (total h) Culture composition
(change -, =, +)

mRNA response
(change -, =, +)

Other findings
(change -, =, +)

Ikenoue 2003
(Ikenoue et al.
2003)

Human Monolayer 10 %
Fetal bovine serum

1 1 4 1 4 = aggrecan Loading of 16h gave
better results
compared to 4h= collagen II

5 1 + aggrecan

10 = collagen II

1 1 4 4 16 + aggrecan

+ collagen II

5 1 + aggrecan

++ collagen II

10 1 ++ aggrecan

++ collagen II

Elder 2008 (Elder
and Athanasiou
2008)

Young bovine, Agarose gel,
20 % Fetal bovine serum;
50 μg/mL L-ascorbic acid

1 0.1 1 5 5 + GAG = Aggregate
modulus

= collagen II and #
of cells

= E-modulus

5 0.1 = GAG + Aggregate
modulus

= collagen II and #
of cells

= E-modulus

10 0.1 + GAG = Aggregate
modulus

= collagen II and #
of cells

++ E-modulus

1 1 = GAG + Aggregate
modulus

= collagen II and #
of cells

+ E-modulus

5 1 = GAG = Aggregate
modulus

= collagen II and #
of cells

= E-modulus

10 1 ++ GAG ++ Aggregate
modulus

= collagen II and #
of cells

++ E-modulus
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Table 3 Results on changes in cellular, signaling and/or mechanical response to chondrocyte cultivated constructs for hydrostatic compression (Fig. 2). PG is proteoglycan; MMP
is matrix metalloproteinases; h is hours; h/day is hours per day;;- is decrease or inhibition; + is increase; ++ is highest increase; = is no change or status quo. *-symbol implies
pressure converted from strain, which is added in brackets, **-symbol is increased aggrecan only with 4 h (Continued)

Hu 2006 (Hu
and Athanasiou
2006)

Young bovine, Agarose gel, 10 %
Fetal bovine serum; 50 μg/mL L-
ascorbic acid

10 1 4 40 160 = GAG (no loss) +
collagen II

= Aggregate
modulus

Mizuno 2011
(Mizuno and
Ogawa 2011)

Young bovine, Aggregate
pellet, Collagen solution, 10 %
Fetal bovine serum

0.5 0.5 24 7 168 + sGAG + aggrecan, +
collagen II, +
MMP-3, −13

Kawanishi 2007
(Kawanishi
et al. 2007)

Young bovine, Aggregate pellet,
10 % Fetal bovine serum; 50μg/
mL ascorbic acid

5 0.5 4 4 16 + GAG + aggrecan

+ sGAG + collagen II

Suh 1999 (Suh
et al. 1999)

Bovine, Monolayer, 10 % Fetal
bovine serum

−0.08 vacuum 0.14 6 1 6 + PG synthesis + aggrecan

= collagen synthesis = collagen II

Parkinnen 1993
(Parkkinen
et al. 1993)

Bovine, Monolayer, 10 % Fetal
calf serum

5 0.5 1.5 1 1.5 - PG synthesis

0.25

0.05

0.0167 = PG synthesis

0.5 20 1 20 + PG synthesis

0.25

0.05 = PG synthesis

0.0167 - PG synthesis

0.0082 = PG synthesis

0.0034

Jortikka 2000
(Jortikka et al.
2000)

Bovine, Monolayer, 10 % Fetal
bovine serum

5 0.5 20 1 20 + PG synthesis

Smith 1996
(Smith et al.
1996)

Bovine, Monolayer Ham’s F-12
medium; 3 % Fetal bovine serum

10 1 4 1 4 + PG synthesis + aggrecan

+ collagen II

Smith 2000
(Smith et al.
2000)

Bovine, Monolayer, Ham’s F-12
medium

10 1 2,4,8,12, 24 1 2,4,8,12, 24 + aggrecan**, +
collagen II

Superior increase
compared to one
loading period

4 4 16 ++ aggrecan, +
+ collagen II

Heyland 2006
(Heyland et al.
2006)

Porcine chondrocytes, Beads
alginate, 10 % Fetal bovine
serum

0.3 0.0083 6 4 24 + GAG, = collagen II

6 7 42 = GAG, + collagen II = E-modulus
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Table 4 Results on changes in cellular, signaling and/or mechanical response to chondrocyte cultivated constructs for direct compression (Fig. 2). OA is osteoarthritis; MMP is
matrix metalloproteinases; PG is proteoglycan; h is hours; h/day is hours per day; − is decrease or inhibition; + is increase; ++ is highest increase; = is no change or status quo.
*-symbol implies pressure converted from strain, which is added in brackets,** -symbol is increase only present 12 h post stimulation, ^-symbol is increase only present after 6 h
post stimulation

Study Cell source, cultivated
construct, additive(s)

Magnitude (MPa) Freq (Hz) Loading (h/day) Loading (# days) Loading (total h) Culture composition
(change -, =, +)

mRNA response
(change -, =, +)

Other findings
(change -, =, +)

Nebelung 2012
(Nebelung et al.
2012)

Human OA Hydrogel collagen
type I 10 % Human serum

0.6-1.2* (10 %) 0.3 24 28 672 = proteoglycan = aggrecan = E-modulus

= collagen II + collagen II

+ MMP-13

Shelton 2003
(Shelton et al.
2003)

Bovine, Agarose gel Type VII
20 % Fetal calf serum

1.7-2.9* (15 %) 0.3 24 2 48 - GAG

1 + GAG

3 = GAG

Omata 2012
(Omata et al.
2012)

Bovine, Agarose gel Type VII
20 % Fetal bovine serum;
0.85 mM L-ascorbic acid

1.7-2.9* (15 %) 1 6 22 132 + E-modulus

Hung 2004
(Hung et al.
2004)

Bovine, Agarose gel Type VII
10 % Fetal bovine serum; growth
factor: TGF-β1, IGF-1

0.6-1.2* (10 %) 1 3 3 9 + aggrecan = aggregate
modulus

3 20 60 + E-modulus

+ aggregate
modulus

Nicodemus 2010
(Nicodemus and
Bryant 2010)

Young bovine, Hydrogel polyethylene
glycol, 5 % Fetal bovine serum;
50 mg/L L-ascorbic acid

1.2-2.4* (20 %) 0.3 24 7 168 + GAG + aggrecan

- collagen II

- MMP-3

= MMP-13

6 7 42 = GAG = aggrecan

+ collagen II

+ MMP-3, −13

Waldman 2004
(Waldman et al.
2004)

Bovine, Monolayer on top of
calcium polyphosphate mesh,
5 % Fetal bovine serum

0.3-0.6* (5 %) 1 .1 (400 cycles) 3.5 0.5 = PG synthesis

++ coll. synthesis

0.6-1.2* (10 %) ++ PG synthesis

1.2-2.4* (20 %) = coll. synthesis

0.3-0.6* (5 %) 0.6
(2000 cycles)

3.5 2 = PG synthesis

+ coll. synthesis

0.6-1.2* (10 %) + PG synthesis

1.2-2.4* (20 %) = coll. synthesis
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Table 4 Results on changes in cellular, signaling and/or mechanical response to chondrocyte cultivated constructs for direct compression (Fig. 2). OA is osteoarthritis; MMP is
matrix metalloproteinases; PG is proteoglycan; h is hours; h/day is hours per day; − is decrease or inhibition; + is increase; ++ is highest increase; = is no change or status quo.
*-symbol implies pressure converted from strain, which is added in brackets,** -symbol is increase only present 12 h post stimulation, ^-symbol is increase only present after 6 h
post stimulation (Continued)

0.3-0.6* (5 %) 1 0.1 7 1 = PG synthesis = E-modulus

= coll. synthesis

0.1 14 2 + PG synthesis + E-modulus

+ coll. synthesis

De Croos 2006
(De Croos et al.
2006)

Bovine, Monolayer on top of calcium
polyphosphate mesh 5 % Fetal bovine
serum

0.001 1 <1 h 1 <1 h + PG synthesis ^ + aggrecan **

+ coll. synthesis ^ + collagen II **

+ MMP-3, −13
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Table 5 Results on changes in cellular and/or signaling response to BMMSC cultivated constructs under hydrostatic compression (Fig. 2). Sox9 is the gene that regulates
chondrogenic differentiation; h is hours; h/day is hours per day; − is decrease or inhibition; and + is increase; ++ is highest increase; = is no change or status quo

Study Cell source, cultivated
construct, additive(s)

Magnitude (MPa) Freq (Hz) Loading (h/day) Loading (# days) Loading (total h) Culture composition
(change -, =, +)

mRNA response
(change -, =, +)

Mesh

Wagner 2008 (Wagner
et al. 2008)

Human BMMSC, Mesh Collagen
Type 1 50 mg/mL bovine serum
albumin; 50 μg/mL L-ascorbic acid;
10−9 M dexamethasone

1 1 4 10 40 + proteoglycan + Sox9

+ aggrecan

+ collagen II

Luo 2007 (Luo and
Seedhom 2007)

Ovine BMMSC, Mesh non-woven
filamentous plasma-treated polyester
10 % Fetal bovine serum; 50 μg/mL
ascorbic acid; 10−7 M dexamethasone

0.1 0.25 0.5 7 3.5 + GAG

= collagen

0.5 10 5 ++ GAG

+ collagen

Gel

Miyanishi 2006a (Miyanishi
et al. 2006a)

Human BMMSC, Aggregate pellet
1.25 mg/mL bovine serum albumin;
50 μg/mL ascorbic acid; 10−7

M dexamethasone

0.1 1 4 14 56 = sGAG + Sox9

+ aggrecan

= collagen II

1 + sGAG ++ Sox9

+ aggrecan

= collagen II

10 ++ sGAG ++ Sox9

++ aggrecan

+ collagen II

Miyanishi 2006b (Miyanishi
et al. 2006b)

Human BMMSC, Aggregate pellet
1.25 mg/mL bovine serum albumin;
50 cpg/mL ascorbic acid; 10−7

M dexamethasone

10 1 4 14 56 + Sox9

+ aggrecan

+ collagen II

Angele 2003 (Angele
et al. 2003)

Human BMMSC, Aggregate pellet
10 % Fetal bovine serum

5.03 1 4 1 4 = proteoglycan

= collagen

4 7 28 + proteoglycan

+ collagen

Finger 2007 (Finger
et al. 2007)

Human BMMSC, Agarose gel
Type VII Growth medium Cambrex

7.5 1 4 14 56 = Sox9
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Bader 2007; Spiller et al. 2011). Four different constructs
were used to culture chondrocytes: a) explants, which
consist of a complete section of cartilage that is excised
from a cadaver and embedded in a culture medium
(Parkkinen et al. 1993) (Table 1), b) tissue engineered
meshes that have a structural 3D shape (Table 2), c)
monolayers that consist of isolated chondrocytes from full
thickness pieces of cartilage seeded onto a plate (Jortikka
et al. 2000; Smith et al. 2000) (Tables 3–4), d) hydrogels
that have a softer structure compared to meshes (Carver
and Heath 1999b; Hu and Athanasiou 2006) (Tables 3–4).
One study used serum free medium (Li et al. 2013), one
study added human serum (Nebelung et al. 2012), three
added calf serum, and twenty one studies added bovine
serum, with thirteen studies also adding L-ascorbic acid
and two also adding growth factors in conjunction
(Tables 1, 2, 3, 4).
Second, BMMSCs were harvested from bone marrow,

and centrifuged to become a pellet culture (Miyanishi
et al. 2006a; Kawanishi et al. 2007) (Table 5). Two culti-
vated constructs were used onto which BMMSCs were
seeded : a) a gel or pellet composition and b) tissue engi-
neered meshes (Luo and Seedhom 2007; Wagner et al.
2008) (Table 5). Bovine serum was added in five out of 6
studies, with four studies also adding 50 μg/mL L-ascorbic
acid and dexamethasone.

Loading regime
Two types of cyclic compression were applied: hydrostatic
or direct compression (Fig. 2). Hydrostatic pressure is
applied by compressing the fluid surrounding the tested
culture with a piston (Elder and Athanasiou 2009)
(Tables 1, 2, 3 and 5). Direct compression implies that a
piston directly presses on the tissue, which is commonly
expressed in percentage of strain (Demarteau et al. 2003)
(Tables 1,2 and 4). Except the studies by Torzelli et al.
Fig. 2 Difference between hydrostatic compression (left) and direct compr
(Torzilli et al. 1996; Torzilli et al. 2011) and De Croos et al.
(De Croos et al. 2006), all other eleven studies required
conversion from strain to pressure (Tables 1, 2 and 4).
The loading magnitude, frequency and regime varied

highly. For example Carver and Heath stimulated their
samples with 6.9 MPa at 0.25Hz for 2 h per day over a
period of 35 days (Carver and Heath 1999b), while
Démarteau et al. applied a loading of 5 % of strain with
0.1Hz for 4 h per day over a period of 3 days (Démarteau
et al. 2003). In contrast to this, five out of six studies with
human derived BMMSC used 1 Hz as loading frequency
for 4 h per day (Table 5) (Angele et al. 2003; Miyanishi
et al. 2006a, 2006b; Finger et al. 2007; Wagner et al. 2008).

Cartilage cellular, signaling and mechanical response
parameters
Three types of methods were found to document cartilage
quality response: cellular, signaling, and mechanical re-
sponses (Tables 1, 2, 3, 4, 5). Cellular response is routinely
determined with histology, which allows identification of
specific (macro) molecules that typically represent healthy
cartilage (proteoglycans, glucosaminoglycans (GAGs) and
sulfated glucosaminoglycans (sGAGs), collagen type II).
An increase of proteoglycans is typically determined using
staining with Safranin O (Darling and Athanasiou 2003;
Schulz and Bader 2007). Similarly, the increase of GAGs
and sGAGs is determined with dimethylmethylene blue
assay staining (Farndale et al. 1986; Carver and Heath
1999b; Shelton et al. 2003; Heyland et al. 2006; Hilz et al.
2014). The increase in collagens is determined by staining
with Picrosirius red, Masson’s trichrome stain, or
antibody-staining such as anti-collagen antibodies or
monoclonal antibodies, and/or the use of polarized light
(Angele et al. 2003; Darling and Athanasiou 2003; Heyland
et al. 2006; Elder and Athanasiou 2008; Nicodemus
and Bryant 2010). After staining, the histologic samples
ession (right). The arrows indicate the loading direction
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are further interpreted with histologic scores and
compared to control samples to indicate relative cellular
responses. The type of collagen is assessed with
immunohistochemistry (Elder and Athanasiou 2008). Fi-
nally, cellular response in the form of proteoglycan syn-
thesis is routinely determined by assessing the radioactive
labeled 35Sulfate-uptake by the proteoglycans (Parkkinen
et al. 1993; Torzilli et al. 2011; Li et al. 2013).
Signaling response indirectly indicates the potential of

the cells to (de)differentiate into cartilage, because it
assesses changes in the level of mRNA expression as
produced by the chondrocyte cells with a reverse tran-
scription polymerase chain reaction (RT-PCR) (Darling
and Athanasiou 2003; Schulz and Bader 2007). A change
in proteoglycan production is commonly documented as
an increase in aggrecan mRNA that is the core protein
backbone to which GAGs chains are attached (Tables 1,
2, 3, 4) (Démarteau et al. 2003; Ikenoue et al. 2003;
Schulz and Bader 2007). With the same method other
relevant expressions are assessed: collagen type II, the
gene sex determining region box 9 (Sox9) and Matrix
metalloproteinases (MMP). Sox9 is indicative for the
regulation of chondrogenic differentiation and plays a
role in expression of collagen type II and aggrecan
(Démarteau et al. 2003; Miyanishi et al. 2006a; Finger
et al. 2007; Wagner et al. 2008; Hilz et al. 2014). MMP
plays a major role in ECM turnover and degradation
(Hilz et al. 2014). MMP-3 has shown to be a key player
in degrading matrix and inactivating other degrading
enzymes (Cawston and Wilson 2006; Echtermeyer et al.
2009), and MMP-13 seems to influence the progress of
osteoarthritis (Hilz et al. 2014).
Mechanical responses were documented by compres-

sion tests of the samples and determining the Young’s
(or E-) modulus from the linear range of the stress–
strain curve (Carver and Heath 1999b; Hung et al. 2004;
Heyland et al. 2006; Hu and Athanasiou 2006; Elder and
Athanasiou 2008; Omata et al. 2012). Cartilage quality
response was given as change of cellular response
(including synthesis) by 27 of 33 studies, as change of
signaling response by 21 of 33 studies, and as change of
mechanical response by 9 of 33 studies.

Responses to mechanical stimuli
Due to the difference in cell sources, cultivated constructs,
compression and outcome measures only qualitative com-
parison could be performed. Bovine explant testing
mimics the in vivo case most closely especially the study
by Li et al. (Li et al. 2013), since they used bruised explants
(Table 1). The studied variations in the loading regime of
the explants suggest a certain threshold for the magnitude
of loading (>10 % or > 1.2 MPa) and the frequency
(>0.5 Hz) to stimulate increased proteoglycan synthesis
(Table 1). Only Okuda et al. (Okuda et al. 2013) confirmed
that this was correlated to increased mechanical response.
Studies that tested equine chondrocyte-seeded meshes by
hydrostatic compression support the need for a loading
threshold (Table 2), since increased cell density was
observed by higher loading magnitudes and correlated to
increased mechanical response (Carver and Heath 1999b).
The three studies of chondrocyte-seeded meshes by direct
compression presented too much variation to point in a
specific loading regime (Table 2).
The studies that use monolayer and gel cultivated con-

structs and test variations in loading magnitude, frequency
or loading regime (Tables 3–4) also suggest the need for
thresholds in magnitude and frequency with a trend to-
wards higher values (up to 5–10 MPa and up to 1 Hz)
compared to the explant studies to achieve increased re-
sponses (Parkkinen et al. 1993; Smith et al. 2000; Ikenoue
et al. 2003; Shelton et al. 2003; Waldman et al. 2004; Elder
and Athanasiou 2008). Tables 3–4 also highlight the effect
of different loading regimes, which seems to suggest that
prolonged duration and loading at intervals (no continu-
ous intermittent loading) increase cell density and synthe-
sis, signaling response as well as mechanical response (e.g.
(Shelton et al. 2003; Hung et al. 2004)). Exceptions are the
studies by De Croos (De Croos et al. 2006) who find in-
creased response at a low magnitude of 0.001 MPa applied
for less than 1 h, and by Hu and Athanasiou (Hu and
Athanasiou 2006) who did not find a change in the
E-modulus after prolonged loading for 160 h.
The studies using BMMSCs as cell source support the

suggestion that the largest increase in cellular and signal-
ing response is achieved for larger loading magnitudes
(>5 MPa) at a frequency of 1 Hz for a prolonged period
(>7 days) at intermittent intervals (Table 5). However, no
mechanical responses were measured for these constructs.

Discussion
Five studies mimicked the in vivo case most closely by
testing bovine explants. Only two of these varied the load-
ing magnitude or frequency, which suggest the need of a
certain threshold (>20 % strain and > 0.5 Hz) for increased
proteoglycan synthesis (Table 1). A careful qualitative in-
terpretation of the results suggests that for chondrocyte-
seeded cultivated constructs a loading pressure between
5–10 MPa and a loading frequency of 1 Hz exerted at
intermittent intervals for a period of a week or longer are
recommended as appropriate mechanical stimulus. These
values are in the physiologic range of normal gait (Waters
et al. 1988; Giddings et al. 2000; Brand 2005; Doke et al.
2005; van Dijk et al. 2010a). Due to the variety of testing
conditions and methods to express cartilage quality re-
sponse, only qualitative comparison was possible, which
poses limitations to the study. First, differences in sample
tissue, sample preparation, donor type and donor age all
accounted for differences in the outcome of these studies
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(Parkkinen et al. 1993; Carver and Heath 1999a; Darling
and Athanasiou 2003; Chung and Burdick 2008). Still,
fourteen of the 33 studies did measure the cartilage quality
response to varying loading parameters within the same
set up. Even though, signaling response does not always
reflect actual cellular and mechanical changes, the studies
that report them also report cellular and/or mechanical
response in conjunction (Tables 2, 3, 4, 5), with in the ma-
jority of the cases showing corresponding in- or decreases.
With this, the decision was made to include studies that
only present signaling response (four in total), since two
have varied the loading regime (intermittent vs continuous
loading (Smith et al. 2000); and loading magnitude and
duration (Ikenoue et al. 2003)) as needed to answer our
main research question (Table 3). Second, two different
types of compression were applied: hydrostatic (Tables 1,
2, 3 and 5) and direct compression (Tables 1,2 and 4).
There is an on-going debate which type of loading is more
physiological. Some are in favor of direct compression
(Buschmann et al. 1995; Mauck et al. 2000; Waldman
et al. 2004). Also, direct compression allows continuous
measurement of mechanical responses, but needs some
tricks to be applied to soft constructs by placing the sam-
ples in bags (De Croos et al. 2006). Bachrach et al.
(Bachrach et al. 1998) suggest that hydrostatic pressure
seems to be more representative for the in vivo loading
case, because it mimics the viscoelastic multiphasic cartil-
age behavior closest. A drawback is that it also stimulates
the sides of the samples. An advantage of applying hydro-
static compression is that it allows for harmonization of
the applied load, and it allows mechanical stimulation of
different types of cultivated constructs including the softer
ones. The proposed transformation procedure from strain
to pressure seems to make sense, because the calculated
pressure values are in line with the values found in other
studies: 3.6 MPa leads to a 29 % strain (Herberhold et al.
1999) vs 20 % strain (Hilz et al. 2014) (Tables 2 and 4).
However, it still remains an approximation, which needs
to be interpreted with care. Third, biologic demonstration
of the increase in cartilage quality response is highly im-
portant, since it indicates parameters (signals, cells types,
cell synthesis) that should be triggered to stimulate the
cell activity and behave like cartilage. However, documen-
tation of actual mechanical response would be expected as
well, since this determines performance. In one quarter of
the studies (9 out of 33) the mechanical response was
measured, which is a rather low percentage. Some of the
cultivated constructs (monolayer, pellet) do not resemble
the actual ECM structure, which makes mechanical test-
ing difficult or impossible (Tables 1, 2, 3, 4, 5). Full
characterization is difficult, because of its highly complex
viscoelastic behavior (Mow et al. 1999; Schulz and Bader
2007; Khan and Scott 2009; Madry et al. 2010). Further-
more, constructs can also change due to the loading or do
not necessarily mimic mechanical cartilage behavior
(Nebelung et al. 2011). This latter is supported by conflict-
ing results that were found for two studies in which agar-
ose gel was used: Hu and Athanasiou (Hu and Athanasiou
2006) show that a 20 % increase in collagen type II does
not seem to influence the mechanical properties (Table 3),
and others (Hung et al. 2004; Elder and Athanasiou 2008;
Omata et al. 2012) did not find a relation between histo-
logic and mechanical parameters.
In vivo tissue engineering cartilage repair techniques

(e.g. Matrix-Induced Autologous Chondrocyte Implant-
ation or cell-seeded hydrogel plugs (Brittberg 2010;
Fortier et al. 2011; Hildner et al. 2011; Spiller et al.
2011)) make use of similar scaffolds. This review gives a
summary of current evidence, which can be used for fu-
ture development of on in vivo application rehabilitation
protocol. Several factors are fundamentally different for
the in vivo case, including the fact that the ECM is not
intact as result of the cartilage lesion, and that the access
to essential biologicals (e.g. cytokines, growth factors) is
different in the physiologic situation compared to the
in vitro situation. Especially, the boundary between the
healthy cartilage and tissue engineered scaffold is a vul-
nerable spot (Khan et al. 2008), which most likely cannot
withstand the suggested loading magnitude (Guettler
et al. 2004; Khan et al. 2008; van Dijk et al. 2010a,
2010b; Spiller et al. 2011; Hunt et al. 2012). However,
the results could be used to optimize preconditioning of
tissue engineered scaffolds before implantation into pa-
tients (Shelton et al. 2003; Nebelung et al. 2012; Omata
et al. 2012). Therefore, the timing of loading could be a
critical factor that needs to be further explored. For ex-
ample the testing period might be even further extended
(Waldman et al. 2004), since in vivo studies with animal
models evaluated the cartilage quality response after
long testing periods (56 days or longer), much longer
than those found in this review (Saris et al. 2003; Kok
et al. 2013; Miller et al. 2014; Ortved et al. 2015). Finally,
studying the dynamic compression of damaged explants
(e.g. (Li et al. 2013)), should be elaborated to identify the
best magnitude, frequency and loading regime, since
these constructs mimic the in vivo cartilage lesion closest.
This will facilitate the translation of the found combin-
ation of mechanical parameters to patients.

Conclusions
Overall, the results seem to suggest that a certain thresh-
old exits for enhanced cartilage in vitro cultivation of ex-
plants, and that chondrocyte-seeded cultivated constructs
show best results when loaded with physiological mechan-
ical stimuli. This seems a reasonable conclusion, because
nature is highly optimized for daily activities such as nor-
mal walking. Critical aspects remain to be answered for
translation of the results into in vivo therapies.
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